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Abstract

A three-dimensional two-¯uid model has been developed using ensemble-averaging techniques. The
two-¯uid model was closed for adiabatic two-phase bubbly ¯ows using cell averaging which accounted
for the dispersed phase distribution in the region of the averaging volume. The phasic interfacial
momentum exchange includes the surface stress developed on the interface which is induced by the
relative motion of the phases. The surface stress has been obtained by treating the interface as an elastic
spherical shell. A characteristic analysis revealed that the one-dimensional system of two-¯uid
conservation equations which were derived is well-posed over a range of void fractions with increased
value of the interfacial pressure. The propagation of void fraction disturbances (i.e. the void wave) has
also been analyzed by performing a dispersion analysis. The speed, stability and damping of the linear
void waves have been obtained. To study ®nite amplitude void waves, the system of equations has been
transformed into a moving coordinate system, and asymptotic solutions of the transformed nonlinear
void wave equation have been obtained. The speed and the stability of di�erent types of nonlinear void
waves have been found to be sensitive to the closure relations of the two-¯uid model. Among the
di�erent constitutive parameters, the interfacial pressure di�erence in the continuous phase and the void
fraction gradient in the non-drag force are found to be the most signi®cant in determining behavior of
void waves in bubbly ¯ows. The derived void wave speed agrees well with the void wave data of bubbly
air±water ¯ow. # 1998 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Di�erent averaging techniques have been proposed for deriving two-¯uid models. The time-

average technique has been extensively studied by Ishii (1975) and has been widely used by

many researchers. Nigmatulin (1979) derived a volumetric averaged set of balance equations

which were constituted by using the concept of cell averaging. Delhaye (1976) developed a

space/time averaging technique for one-dimensional two-phase ¯ows, and Drew and Lahey

(1989a) developed a three-dimensional two-¯uid model using a combination of space and time

averaging.

An ensemble-averaging technique is the most fundamentally rigorous form of averaging

(Buyevich, 1971; Batchelor, 1970). In the ensemble average process, the ensemble is a set of

¯ows that can occur at a speci®ed position and time. Thus, the ensemble-averaging may

include all the phasic interactions without specifying the time and length scales, in contrast to

the other averaging techniques. Arnold (1988) developed a multidimensional two-¯uid model

using an ensemble-averaging technique.

In this work, a two-¯uid model, which is an extension of the model derived by Arnold

(1988), is derived. By considering the probability of a dispersed phase particle's location within

an averaging volume (i.e. a cell) the two-¯uid constitutive relations for adiabatic two-phase

bubbly ¯ows have been derived. The interfacial momentum transfers between the phases have

been found by treating the phasic interface as an elastic spherical shell which experiences the

force induced by the relative motion of the continuous phase.

To assess the validity of the two-¯uid model presented herein, limiting steady and transient

situations, in which the void fraction vanishes, have been considered. It is also shown that the

two-¯uid model which was derived is compatible with those previously derived two-¯uid

models by Geurst (1986), Wallis (1991), and Pauchon and Smereka (1992).

The well-posedness of the two-¯uid model which has been derived is studied by considering

the system's one-dimensional characteristics. The two-¯uid model is found to be well-posed

within a range of void fractions when the interfacial pressure is given to be greater than that of

the ideal spherical bubble. If we take the value of the pressure coe�cient, Cp, recommended by

Lance and Bataille (1991), i.e. Cp=1.0, the two-¯uid model is well posed for a wide range of

volume fraction.

Since the properties of the void wave have been found (BoureÂ , 1982; Pauchon and Banerjee,

1988; Park et al., 1990a; Biesheuvel and Gorrisen, 1990; Lahey, 1991) to be sensitive to the

two-¯uid model's closure relations, void wave propagation phenomenon has been analyzed.

Using the void wave dispersion model, the stability, speed and damping of the void wave

have been determined. To analyze ®nite amplitude void waves, such as void wave shocks and

solitons (Haley et al., 1991; Park et al., 1990b), the system of equations are cast into a moving

coordinates. The speed and the stability of di�erent nonlinear void waves has been found from

the nonlinear void wave equations.

This study shows that an ensemble-averaged two-¯uid model, which was constituted using a

cell model approximation for dispersed two-phase ¯ows, is appropriate for describing transient

and steady phenomena in dilute dispersed two-phase ¯ows.
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2. Ensemble-averaged two-¯uid equations

The ensemble-averaged two-¯uid conservation equations for adiabatic two-phase ¯ows can
be obtained by averaging the phasic local instantaneous mass and momentum conservation
equations (Drew, 1983; Lahey and Drew, 1990) as:

Mass conservation:

@

@t
�Ekrk� � r � �Ekrkvk� � 0: �1�

Momentum conservation:

@

@t
�Ekrkvk��r � �Ekrkvkvk� � ÿr�Ekpk� � r � �Ek�tk � tRek ��

�Ekrkg�Mki �2�
where r k, pk and t k are averaged variables weighted with the phase indicator function, e.g.

rk,wk ~rk=Ek; �3�
where ~rk is the exact density. Also, vk is the mass-weighted average velocity, de®ned by

vk,wk ~rk~vk=Ekrk �4�
where, ~vk is the exact velocity ®eld. Also,

tRek ,ÿwk ~rkv
0
kv
0
k �5�

Mki,ÿ Tk � rwk �6�
and the phase indicator function has been de®ned as

wk�x; t�, 1; if phase-k is found at �x; t�
0; otherwise

:

�
We note that the gradient of the phase indicator function can be expressed as:

rwk�x; t� � ÿnkdk�x; t� �7�
where nk is the unit normal vector and dk(x, t) is a Dirac delta function.
If we treat the phasic interface as an elastic shell of in®nitesimal thickness which experiences

the stress induced on it by each phase, we obtain the momentum equation for the shell (i.e. the
interface) as:

r � Ts � 0; �8�
where

Ts,ms�ru� �ru�T� � ls�r � u�I �9�
and, u, ms and ls are the displacement and the LameÂ constants, respectively.
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To obtain the so-called momentum jump condition between the phases, we must appropriately
average the interfacial momentum equation, Eq. (8). If we de®ne the indicator function for the
interface (i.e. the shell) as:

ws�x; t�, 1; if the shell is found at �x; t�
0; otherwise

�
we obtain the averaged form of Eq. (8) as

r � �wsTs� � Ts � rws: �10�
The shell indicator function can be related to the phasic indicator functions for the gas (G) and
the liquid (L) phases as:

ws � 1ÿ wG ÿ wL �11�
Using Eq. (11), we can rearrange Eq. (10) as

r � �wsTs� � ÿTs � rwG ÿ Ts � rwL �12�
or, using Eq. (7).

r � �wsTs� � Ts � nGdG�x; t� � Ts � nLdL�x; t�: �13�
We now may introduce an assumption that the normal component of the stress at the surface
of the shell (i.e. the interface) is continuous, that is:

�Ts�in � nG � TGi � nG �14�
at the inner surface, and

�Ts�ex � nL � TLi � nL �15�
at the outer surface. Here, the subscripts `in' and `ex' indicate the interior and the exterior
surfaces of the shell, respectively.

Inserting Eqs. (14) and (15) into Eq. (13), we obtain

r � �wsTs� � TG � nGdG�x; t� � TL � nLdL�x; t� �16�
or, equivalently,

r � �wsTs� � ÿTG � rwG ÿ TL � rwL: �17�
If we use the de®nitions given by Eq. (6), we obtain

MGi �MLi � r � �wsTs� � r � �wsTs�; �18�
which can be considered to be a momentum jump condition between the phases.

As can be seen in Eqs. (3)±(6) and (18), the terms which arise from the ensemble averaging
process do not explicitly involve the basic two-¯uid state variables (e.g. pk, vk and E k). Thus,
these equations must be constituted in order to achieve closure. Moreover, it is important to

J.-W. Park et al. / International Journal of Multiphase Flow 24 (1998) 1205±12441208



realize that it is with these closure laws that the microscale information which was lost during
the averaging procedure is reintroduced (Alajbegovic, 1994).

3. Constitutive relations for bubbly ¯ows

The ensemble averaged two-¯uid equations can be constituted by using the cell averaging
technique of Arnold (1988) with the following assumptions:

(i) The ¯uids are inviscid, incompressible and have constant thermophysical properties;
(ii) The dispersed phase can be treated as a dilute dispersion of spheres.
(iii) The nonuniformity in the distribution of the dispersed phase is small.

In the cell model ensemble average, the ensemble is that set of ¯ows that can occur at location
x with the center of the spherical bubble occupying di�erent positions within the cell (see
Fig. 1). In this case, the average is performed by integrating over the variable, z, that is, the
possible positions that the center of the bubble can have. The center of the bubble, z, can lie
anywhere inside the sphere of radius R. We assume that the distribution of positions is such
that,

P�x; t; z� � dV
4
3pR

3

�
1ÿ x 0 � rEG�x; t�

EG�x; t�
�

�19�

is the probability of ®nding a bubble in a volume dV surrounding the point x where
x 0= xÿ z. This is approximately equal to

dV
4
3pR

3

EG�z; t�
EG�x; t� :

Fig. 1. A typical averaging cell.
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The factor EG(z, t)/EG(x, t) is the appropriate multiplier to change the probability of ®nding the

bubble at x to the probability of ®nding the bubble at x to the probability of ®nding the

bubble at z.

Note that the `cell model' accounts to the in¯uence of one bubble on the quantities

calculated at a point x. Thus, the method ignores e�ects of order E 2G. In addition, we have

systematically ignored terms resulting from products of gradients. These terms are of order

(a/R)2 smaller than terms retained.

For inviscid, irrotational ¯ows, the ¯ow potential f satis®es

r2f � 0 �20�
and the corresponding pressure in the continuous phase is given by the transient Bernoulli

equation:

PL � p1 ÿ rL

�
@f
@t
� 1

2

����rf����2�: �21�

If we consider a spherical bubble of radius `a' moving with velocity vG (z, t) in a ¯ow ®eld,

vLo(t)+ x 0 � HvL, the appropriate velocity potential is (Voinov, 1973):

f�x; z� � ÿ a2

r 0
_aÿ 1

2

�
a

r 0

�3

vG � x 0 � fo �
�
1� 1

2

�
a

r0

�3�
rfo � x 0

�
�
1

2
� 2

3

�
a

r 0

�5�
rrfo : x 0x 0 . . . �22�

where r 0= vx 0v and fo is the ¯ow potential at z when the bubble does not exist.

If we assume that the average ¯ow around the bubble can be approximated by a uniform

velocity gradient, we may expand fo as,

fo � f 0 ÿ rf 0 � x 0 � . . . �23�
where f 0 is the ¯ow potential at x for the undisturbed ¯ow.

Using Eq. (23), we may rewrite Eq. (22) as:

f�x; z� � f 0 ÿ a2

r 0
_aÿ 1

2

�
a

r0

�3

vr � x 0 � 1

2

�
ÿ
�
a

r 0

�3

� 2

3

�
a

r 0

�5�
rrf : x 0x 0 � . . . �24�

where,

vr,vG ÿ rf0 �25�
is the relative velocity of the bubble at the sphere center.
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The local velocity of the continuous phase can be obtained from Eq. (24) as,

~vL�x; z� �rf�x; z�

�V� 1

2

�
a

r 0

�3�
3�vr � x 0�x 0
�r 0�2 ÿ vr

�
� 1

3

�
a

r 0

�5

x 0 �
�
5�rvL � x 0x 0�
�r 0�2 ÿ 2vL

�
�26�

where,

V � rf0: �27�
Note that the liquid velocity, in the absence of the bubble, can depend on x. Moreover, the

bubble velocity vb can depend on position [in this case vb= vb(z)], and the volume fraction of

the gas phase can also depend on position. The cell model provides a means of accounting for

all these e�ects.

To average the continuous phase velocity, we place a large sphere (i.e. the cell) of radius, R

centered at x. We then obtain the cell-average velocity of the continuous phase as:

vL � 1
4
3 p�R3 ÿ a3�

�R
a

� �
O�r 0�

~vL�x; z�
�
1ÿ x 0 � rEG

EG

�
dO�r 0�dr 0: �28�

Evaluating the integral using Eq. (26), we obtain

vL � V; �29�
where the products of the derivatives may be neglected according to the assumption (ii) made

in this section.

The Reynolds stress for the continuous phase is de®ned by Eq. (4) as

ELtReL �ÿ wLrLv
0
Lv
0
L

� 1
4
3 p�R3 ÿ a3�

�R
a

� �
O�r 0�
ÿrLv 0Lv 0L

�
1ÿ x 0 � rEG

EG

�
dO�r0� dr 0; �30�

where

v 0L � rf�x; z� ÿ vL: �31�

Using Eqs. (24) and (31), we obtain

tReL � ÿ
1

20
rL

EG
EL
�vrvr � 3�vr � vr�I� �32�

which, for su�ciently small EG, reduces to the results previously obtained by Arnold (1988) and

Biesheuvel and Wijngaarden (1984).
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Similarly, the interfacial averaged Reynolds stress is,

ELtReLi �ÿ wLrLv
0
Liv
0
Li

� 1

4pa2

� �
O�a�
ÿrLv 0Liv 0LidO�a�; �33�

where v 0Li is the deviation of the continuous phase velocity at the surface of the sphere (i.e. at

r 0= a). (Note that we do not include the variable part of the probability of ®nding the sphere

at zÐit is negligible.)

Evaluating the integral in Eq. (33), we obtain:

tReLi � ÿ
1

20
rL�vrvr � 3�vr � vr�I�: �34�

If we introduce Eq. (24) into Eq. (21), we obtain the local pressure in the continuous phase as,

~p�x; z� � po � 1

2

�
a

r

�3

rL _vr � x 0 ÿ
��

a

r 0

�5

ÿ 2

�
a

r 0

�2�
rL _a

vr � x 0
r 0

ÿ
�
1

8

�
a

r 0

�6

� 1

2

�
a

r 0

�3�
rLvr � vr �

�
3

2

�
a

r 0

�3

ÿ 3

8

�
a

r 0

�6�
rL
�vr � x 0�2
�r 0�2

�
�
3

2

�
a

r 0

�3

� 5

3

�
a

r 0

�5

ÿ 2

3

�
a

r 0

�7�
rL
�rV : x 0x 0��vr � x 0�

�r 0�2

�
�
1

2

�
a

r 0

�3

� 2

3

�
a

r 0

�5

� 1

3

�
a

r 0

�8�
rL�rV : x 0vr�

� 1

2

�
a

r0

�3

rL�rV : x 0vr�

�
�
3

4

�
a

r 0

�6

ÿ 3

�
a

r 0

�3�
rL
�rvr : x 0x 0��vr � x 0�

�r 0�2

�
��

a

r 0

�3

� 1

4

�
a

r 0

�6�
rL�rvr : x 0vr� �35�

where, the continuous phase pressure if the bubble were not present is:

po,p1 ÿ r _f 0 ÿ 1

2
rLV � V: �36�
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Thus, the average pressure of the continuous phase is given by:

pL � 1
4
3 p�R3 ÿ a3�

�R
a

� �
O�a�

~p�x; z�
�
1ÿ x 0 � rEG

EG

�
dO�r0� dr0: �37�

Evaluating the integral in Eq. (37), using Eq. (35), we obtain (Arnold, 1988),

pL � po ÿ 1

4
EGrLvr � vr: �38�

The continuous phase interfacial pressure (i.e. the pressure at the exterior surface of the

spherical shell) can be found by setting r 0= a in Eq. (35), resulting in,

~pLi � po � 1

2
rLavr � er �

3

2
rL _avr � er ÿ 5

8
rLvr � vr �

9

8
rL�vr � er�2

� 5

2
rLa�rV : erer��vr � er� � 3

2
rLa�rV : ervr�

� 1

2
rLa�rvr : ervr� ÿ 9

4
rL�rvr : erer��vr � er� � 5

4
rLa�rvr : ervr�; �39�

where

er,x 0=r 0:

The average interfacial pressure can be de®ned as,

pLi � 1

4pa2

� �
O�a�

~pLidO�a�: �40�

Performing the integration in Eq. (40), we obtain,

pLi � po ÿ 1

4
rLvr � vr: �41�

Thus, we obtain the interfacial pressure di�erence of the continuous phase, from Eqs. (38) and

(41), as

DpLi,pLi ÿ pL � ÿ 1

4
rLELvr � vr � ÿ

1

4
rL�1ÿ EG�vr � vr; �42�

which agrees with the result obtained by Stuhmiller (1977) when EG is su�ciently small.

One may also allow a deviation in the local velocity of the bubble, vb, from the average

velocity of the dispersed phase. However, it has been found (Drew, 1991) that these e�ects are

negligible when the dispersed phase has a much lower density than the continuous phase (i.e.

gas bubbles in liquid). Thus, in this work we have assumed:

vG � vb: �43�
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The interfacial momentum source for the liquid phase can be written as

MLi � ~pLrw1 ÿ ~tL � rwL: �44�
The ®rst term in Eq. (44) can be evaluated as

~pLrwL �
1

4
3 pR

3

� �
O�a�

~pLier

�
1ÿ a

er � rEG
EG

�
dO�a�: �45�

Using the continuous phase interfacial pressure given by Eq. (39), we obtain:

~pLrwL �
1

2
EGrLavm �

1

4
EGrLvr � �rvTG ÿrvG�

� 3

2
EGrL

_a

a
vr � 5

4
EGrLvr � rvTL

ÿ 9

20
EGrL�vr � �rvG � rvTG� � �r � vG�vr�

ÿporEG � 2

5
rL�vr � vr�rEG ÿ

9

20
rL�vr � rEG�vr; �46�

where

avm �
�
@

@t
� vb � r

�
vb ÿ

�
@

@t
� V � r

�
V �47�

and we can interpret the time derivative of the bubble radius as,

_a �
�
@

@t
� vG � r

�
a,

DGa

Dt
: �48�

Using the dispersed phase continuity equation, we obtain,

3

2
rLvrEG

_a

a
� 1

2
rLvr

DGEG
Dt
� 1

2
rLvrEG�r � vG� �49�

Using Eq. (49), we can rewrite Eq. (46) as:

~pLrwL �
1

2
EGrLavm �

1

4
EGrLvr � �rvTG ÿrvG�

� 1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
� 5

4
EGrLvr � rvTr

ÿ 9

20
EGrL�vr � �rvr � rvTr � � �r � vr�vr�

ÿ
�
pLi � 1

4
rLvr � vr

�
rEG � 2

5
rL�vr � vr�rEG

ÿ 9

20
rL�vr � rEL�vr: �50�

J.-W. Park et al. / International Journal of Multiphase Flow 24 (1998) 1205±12441214



The second term in Eq. (44) quanti®es the viscous stress at the exterior surface of the spherical
shell. Thus, one may try to ®nd the local stress ®eld in the liquid, tL, by analyzing the
boundary layer around the spherical shell (Arnold, 1988). However, the viscous stress is only
important when the relative velocity between the phases is small. Instead, the average stress
induced by the motion of the continuous phase, which occurs when the boundary layer around
the bubble separates, is dominant in the range of normal applications of two-phase bubbly
¯ows. However, this e�ect is not considered in the inviscid analysis leading to Eq. (50).
Therefore, it appears to be reasonable to introduce an interfacial drag model which includes
both of the local viscous shear and the form drag around the spherical shell.

We may partition the interfacial momentum source for the continuous phase as (Lahey and
Drew, 1990; Ishii and Mishima, 1984):

MLi,M
�nd�
Li �M

�d�
Li � pLirEL ÿ �tLi � tReLi � � rEL �51�

where,

M
�nd�
Li ,� ~pL ÿ pLi��nd�rwL ÿ �~tL ÿ tReLi � � rwL �52�

or,

M
�nd�
Li �

1

2
EGrLavm �

1

4
EGrLvr � �rvTG ÿ rvG�

� 1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
� 5

4
EGrLvr � rvTr

ÿ 9

20
EGrL�vr � �rvr �rvTr � � �r � vr�vr�

� 3

10
rL�vr � vr�rEG ÿ

2

5
rL�vr � rEG�vr �53�

M
�d�
Li ,ÿ �~tL ÿ tLi� � rwL � � ~pL ÿ pLi��d�rwL �54�

It is also well known (Drew and Lahey, 1987, 1989b) that a lateral force induced by the
rotational part of the liquid ¯ow ®eld around the sphere (i.e. the so-called lift force) should be
included in the non-drag momentum exchange term.

The lift force was found by Drew and Lahey (1987, 1989b) to be:

ML
Li � CLrLEGvr � r � vL �55�

where, depending on the ¯ow conditions, CL=0.01ÿ0.5.
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Thus, if we include the lift force in Eq. (53), we obtain,

M
�nd�
Li �

1

2
EGrLavm �

1

4
EGrLvr � �rvTG ÿ rvG�

� 1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
� 5

4
EGrLvr � rvTr

ÿ 9

20
EGrL�vr � �rvr �rvTr � � �r � vr�vr�

� 3

10
rL�vr � vr�rEG ÿ

2

5
rL�vr � rEG�vr

�CLrLEGvr � r � vL: �56�
For monodispersed bubbly ¯ow, the sum of the viscous shear force and the form drag can be

modeled as,

M
�d�
Li ,ÿ �~tL ÿ tLi� � rwL � � ~pL ÿ pLi��d�rwL �

3

8

CD

Rb
rLEG j vr j vr �57�

where the subscript (d) implies drag. The parameter CD is an appropriate interfacial drag

coe�cient and Rb is the radius of the bubbles. It should be noted that we may also write,

CD=8/3 Rb/DH fi, where fi is the so-called interfacial friction factor.

Harmathy (1961) proposed a model for the drag coe�cient for distorted bubbles as,

CD � 4

3
Rb

�
G�rL ÿ rG�
s�1ÿ EG�

�1=2
: �58�

For undistorted spherical bubbles, the interfacial drag coe�cient proposed by Ishii and Zuber

(1979) is:

CD � 24
�1� 0:1Re0:75b �

Reb
; �59�

where

Reb � 2rL j vr j Rb

mL
E2:5m

�
m

L �60�

m�m �
�mG � 0:4mL�
�mG � mL�

: �61�

Arnold (1988) constituted t Li, for di�erent values of Reynolds number to obtain,

tLi � 0: �62�
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However, as shown in Eq. (34), this does not imply that the interfacial Reynolds stress, tReLi , is
zero.
The average stress on the interface (i.e. the spherical shell) can be found from

ws~Ts � 1
4
3pR

3

� � �
Vs

~TsdV; �63�

where Vs is the volume of the shell.
Using Eq. (8), we may rewrite the stress tensor of the shell as

~Ts � r � �~Tsx
0�: �64�

If we insert Eq. (64) into (63), we obtain

ws~Ts � 1
4
3pR

3

� � �
Vs

r � �~Tsx
0� dV: �65�

Applying the Gauss theorem

ws~Ts � 1
4
3pR

3

� �
O�a�

nL � �~Tsx
0�exdO�a� �

1
4
3 pR

3

� �
O�a�

nG � �~Tsx
0�indO�a�: �66�

The normal components of the stress at the surfaces of the shell can be taken to be:

nL � �~Ts�ex � nL � ~TLi � ÿ ~pLinL �67�

nG � �~Ts�in � nG � ~TGi � ÿpGinG; �68�
where the normal component of the phasic viscous shears are assumed small compared to the
phasic pressure. Thus, Eq. (66) becomes:

ws~Ts � 1
4
3pR

3

� �
O�a�

~pLinLx
0dO�a� ÿ 1

4
3 pR

3

� �
O�a�

~pGinGx
0dO�a�: �69�

Evaluating the integral in Eq. (69) using the interfacial pressure of the continuous phase given
by Eq. (39), we obtain,

ws~Ts � EG

�
ÿ 9

20
rLvrvr �

�
8

20
rLvr � vr ÿ �rGi ÿ rLi�

�
I

�
; �70�

where it has been assumed that,

pG � pGi � constant:

Alternatively, we can rewrite Eq. (70) using Eq. (41) as:

r � �wsTs� � r � �EG�ss � � pGi ÿ pLi�I��; �71�
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where

ss � rL

�
ÿ 9

20
vrvr � 3

20
�vr � vr�I

�
: �72�

The source of the average interfacial stress, ss, is illustrated schematically in Fig. 2. We see

that an average interfacial stress may arise due to a net unbalanced interfacial force when the

interface is cut by the control volume.

Thus, we obtain the interfacial momentum source for the dispersed phase, using the

interfacial momentum jump condition, Eq. (18) and Eqs. (51) and (71), as,

MGi � ÿMLi � �EG�ss � � pGi ÿ pLi�I��
or, partitioning into drag and non-drag components,

MGi �ÿM
�nd�
Li ÿM

�d�
Li � �tLi � tReLi � � rEL � r � �EGss�

� r�EGpGi� ÿ EGrpLi: �73�

Fig. 2. The source of interfacial stresses.
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4. Averaged conservation equations

Let us now summarize the averaged conservation equations derived in the previous section,

for adiabatic bubbly ¯ows,

Mass balance:

@

@t
�ELrL� � r � �ELrLvL� � 0 �74�

@

@t
�EGrG� � r � �EGrGvG� � 0: �75�

Momentum balance:

@

@t
�ELrLvL��r � �ELrLvLvL� � ÿELrpL � DpLirEL

�r � �EL�tL � tReL �� � ELrLgÿ �tLi � tReLi � � rEL �M
�nd�
Li �M

�d�
Li �76�

@

@t
�EGrGvG��r � �EGrGvGvG� � ÿEGrpG ÿ �tLi � tReLi � � rEG

�r � �EG�tG � tReG � ss�� � EGrGgÿM
�nd�
Li ÿM

�d�
Li ; �77�

where

pL � po ÿ 1

4
EGrLvr � vr �78�

pLi � po ÿ 1

4
rLvr � vr � pG �79�

DpLi � ÿ 1

4
rLELvr � vr �80�

tReL � ÿ
1

20
rL

EG
EL
�vrvr � 3�vr � vr�I� �81�

tReLi � ÿ
1

20
rL�vrvr � 3�vr � vr�I� �82�
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M
�nd�
Li �

1

2
EGrLavm �

1

4
EGrLvr � �rvTL ÿ rvL�

� 1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
� 5

4
EGrLvr � rvTr

ÿ 9

20
EGrL�vr � �rvr �rvTr � � �r � vr�vr�

� 3

10
rL�vr � vrrEG� ÿ

2

5
rL�vr � rEG�vr

�CLrLEGvr � r � vL �83�

M
�d�
Li �

3

8

CD

Rb
rLEG j vr j vr �84�

avm � DGvG
Dt
ÿDLvL

Dt
�85�

ss � rL

�
ÿ 9

20
vrvr � 3

20
�vr � vr�I

�
�86�

vr � vG ÿ vL �87�
and t Li= tReG = tG=0.

Combining Eqs. (78)±(87) with Eqs. (76) and (77) and neglecting the viscous stresses (i.e. tL
and tG), we obtain the phasic momentum equations as,

@

@t
�ELrLvL��r � �ELrLvLvL� � ÿELrpL � DpLirEL � 1

2
EGrLavm

� 1

4
EGrLvr � �rvTG ÿ rvG� �

1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
� 1

2
rLEGvr � rvTr ÿ

1

2
rLr � �EGvrvr� � CLrLEGvr �r � vL � ELrLG

� 3

8

CD

Rb
rLEGvr j vr j �88�

@

@t
�EGrGvG��r � �EGrGvGvG� � ÿEGrpLi ÿ

1

2
EGrLavm

ÿ 1

4
EGrLvr � �rvTG ÿ rvG� ÿ

1

2
rLvr

�
DGEG
Dt
� EGr � vG

�
ÿ 1

2
EGrLvr � rvTr

ÿCLrLEGvr � r � vL � EGrGgÿ
3

8

CD

Rb
rLEGvr j vr j �89�

where terms of higher-order in EG have been neglected.
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The mixture momentum equation can be found by adding Eqs. (76) and (77) as,

@

@t
�ELrLvL�EGrGvG� � r � �EGrGvGvG � EGrGvGvG�

� ÿELrpL � pLirEL ÿ EGrpLi �r � �ELtReG � EGss�

��EGrG � EGrG�g; �90�
where tL, tG and tReG are neglected.
Noting that from Eqs. (81) and (86),

ELtReL � EGss � ÿ 1

2
EGrLvrvr �91�

we may rearrange Eq. (90) as:

@

@t
�ELrLvL�EGrGvG� � r � �ELrLvLvL � EGrGvGvG �

1

2
EGrGvrvr�

� ÿr�ELpL � EGpG� � �EGrG � EGrL�g: �92�
It should be noted that to the ®rst order in EG, which is in order of accuracy of cell averaging,
Eq. (92) is exactly the same as the mixture momentum equation derived by Wallis (1991).
Moreover, the 1/2H � (EGrLvrvr) term on the left hand side of Eq. (92) arises due to the
interfacial stress and the continuous phase Reynolds stress, as noted in Eq. (91).
It is also interesting to compare the two-¯uid model just derived to one obtained from a

variational approach. Guerst (1986) derived a set of two-¯uid equations using a variational
principle. His phasic momentum equations were:

@

@t
�rLELvL��r � �rLELvLvL � rLm�EG�vrvr�

�ELrpG �r
�
1

2
rL�m�EG� � ELm0�EG��vr � vr

�
�MG �93�

@

@t
�rGEGvG� � r � �rGEGvGvG� � EGrpG � ÿMG; �94�

where

MG � @

@t
�rLm�EG�vr� � r � �rLm�EG�vGvr� � rLm�EG�vr � rvTg ; �95�

If we rearrange Eqs. (88) and (89), we obtain:

@

@t
�ELrLvL� � r � �ELrLvLvL �

1

2
rLEGvrvr� � ELrpL ÿ DpLirEL �M �96�

@

@t
�EGrGvG� � r � �EGrGvGvG� � EGrpLi � ÿM �97�
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where

M,
1

2
EGrLavm �

1

4
EGrLvr � �rvTG ÿ rvG�

� 1

2
rLvr

�
DgEG
Dt
� EGr � vG

�
� 1

2
rLEGvr � rvTr

�CLrLEGvr � r � vL: �98�
To facilitate comparison with Guerst's result, we may rewrite Eq. (98) as:

M � 1

2

@

@t
�rLEGvr� �

1

2
r � �rLEGvGvr� �

1

2
rLEGvr � rvTG

� 1

4
EGrLvr � �rvTr ÿ rvr� �

1

2
rLvr

�
DGEG
Dt
� EGr � vr

�
�99�

where CL=1/4 has been used.

If we note that m(EG)=1/2EG for the virtual volume in Eq. (95), we ®nd that the

discrepancy between the two dispersed phase momentum equations consists of the last two

terms in Eq. (99).

We note that for incompressible bubbles, we have

DGEG
Dt
� EGr � vG � 0: �100�

Thus, the discrepancy is only in the term

Mrot � 1

4
EGrLvr � �rvTr ÿ rvr�:

We note that the rate at which Mrot does work is

vr �Mrot � 1

4
EGrL�vr � �rvTr ÿrvr�� � vr � 0: �101�

Therefore, work done by a term such as Mrot cannot appear in the kinetic energy equation,
and hence cannot appear in the variational equations derived from it. The equations derived

from it are not unique, module terms of the form Mrot.

If we assume that the phasic densities are constant, we obtain, by adding Eqs. (74) and (75),

r � j � 0; �102�
where the volumetric ¯ux is de®ned as,

j,ELvL � EGvG: �103�
One way to assess the validity of the two-¯uid model derived herein is to examine the behavior

of the governing equations in limiting cases. To this end, let us consider the situation in the

limit where the average volume fraction of the dispersed phase, EG, vanishes.
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Thus, if we neglect EG and HEG in Eqs. (102) and (103), we obtain

r � vL � 0; �104�
which agrees with the continuity equation of single-phase incompressible ¯ows. For this

limiting case, the continuous phase's momentum equation, Eq. (88), yields:

rL
DLvL
Dt
� ÿrpL � rLg: �105�

It should be noted that Eq. (105) correctly yields the momentum equation of single-phase

inviscid ¯ow.

We can simplify Eq. (89) by expanding the material derivative of the discontinuous volume

fraction as

DGEG
Dt
� @EG

@t
� vG � rEG � ÿEGr � vG; �106�

where Eq. (75) has been used.

Using Eqs. (78)±(80) and (106), we obtain a simpli®ed form of Eq. (89) as:

rG
DGvG
Dt
� ÿrpL ÿ 1

2
rL

�
DGvG
Dt
ÿDLvL

Dt

�
ÿ 1

4
rLvr �r � vr

ÿ 1

2
rLvr � r � vL � rGg: �107�

Let us now consider the case of a single bubble rising in a stagnant pool of liquid. If the radius

of the pool is very large, we may neglect the average volume fraction of the discontinuous

phase and its derivative. Thus, by combining Eqs. (105), (107) and (104) with vL=0, we

obtain,�
rG �

1

2
rL

�
DGvG
Dt
� ÿ�rL ÿ rG�g; �108�

where the lateral lift forces are zero in this case since H� vG=H� vL=0. Eq. (108) is a well

known result for inviscid ¯ows.

Another interesting case is that of a single bubble placed in a large horizontal converging

stream of liquid. If we somehow apply an external force, Fex, to hold the bubble ®xed, we

obtain from Eqs. (105) and (107),

rLvL � rvL � ÿrpL �109�

0 � ÿrpL � 1

2
rLvL � rvL ÿ Fex: �110�

Combining Eqs. (109) and (110), we obtain the force necessary to ®x the bubble as:

J.-W. Park et al. / International Journal of Multiphase Flow 24 (1998) 1205±1244 1223



Fex �
�
1� 1

2

�
rLvL � rvL � ÿ

�
1� 1

2

�
pL � ÿ 3

2
rpL: �111�

This agrees with the result previously obtained by Taylor (1924) for a spherical particle.
It was pointed out by Wallis (1991) that some averaged two-¯uid models have an

inconsistency in predicting Fex. For example, models used by Pauchon and Banerjee (1986),
Arnold (1988) and Park et al. (1994) resulted in:

Fex �
�
1� 1

4
� 1

4

�
rLvL � rvL � ÿ2rpL: �112�

The reason for this discrepancy is that these two-¯uid models did not include the surface stress
developed on the dispersed particles to maintain the spherical shape of the particle. In this
study, this inconsistency has been removed by properly including the average interfacial stress
(ss) in the two-¯uid model.

5. One-dimensional conservation equations and their characteristics

The one-dimensional form of the mass and the momentum conservation equations can be
obtained by considering the z-directional component of the phasic velocities and forces in
Eqs. (74)±(87) as:

@

@t
�ELrL� �

@

@z
�ELrLuL� � 0 �113�

@

@t
�EGrG� �

@

@z
�EGrGuG� � 0 �114�

@

@t
�ELrLuL��

@

@z
�ELrLu2L� � ÿEL

@pL
@z
� DpLi

@EL
@z
ÿ tReLi

@EL
@z

� @

@z
�EL�tL � tReL �� � ELrLg cos y�M

�nd�
Li �M

�d�
Li ÿ 4

tLw
DH

�115�

@

@t
�EGrGuG��

@

@z
�EGrGu2G� � ÿEG

@pLi
@z
ÿ tReLi

@EG
@z

� @

@z
�EG�tG � ss�� � EGrGg cos yÿM

�nd�
Li ÿM

�d�
Li ÿ 4

tGw

DH
; �116�

where y denotes the angle between the axial direction, z, and the gravity vector.
The closure relations for this one-dimensional system of equations can be summarized as

follows:

M
�nd�
Li � CvmEGrLavm ÿ Cm1EGrLur

@ur
@z
ÿ Cm2rLu

2
r

@EG
@z

�117�
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M
�d�
Li �

3

8

CD

Rb
rLEG j ur j ur �118�

pL � po ÿ CprLEGu
2
r �119�

DpLi � pLi ÿ pL � ÿCprLELu
2
r �120�

ss � ÿCirLu
2
r �121�

tReL � ÿCrrL
EG
EL
j ur j ur �122�

tReLi � ÿCrrLu
2
r �123�

tLw � 1

2
fLwrLuL j uL j �124�

tGw � 1

2
fGwrGuG j uG j; �125�

where, po would be the local liquid phase pressure if the sphere were not present, and:

avm � @uG
@t
� uG

@uG
@z
ÿ
�
@uL
@t
� uL

@uL
@z

�
�126�

ur � uG ÿ uL �127�

Cvm � 1

2
; Cp � 1

4
; Cr � 1

5
;

Ci � 3

10
Cm1 � Cm2 � 1

10
: �128�

Note that the viscous stresses, tL and tG, have been neglected.

If we insert the constitutive relations given by Eqs. (117)±(125) into Eqs. (115) and (116), we

obtain:

rLEL
DLuL
Dt
� ÿEL @pL

@z
ÿ CprLELu

2
r

@EL
@z
� CrrLu

2
r

@EL
@z

ÿ @

@z
�CrrLEGu

2
r � � ELrLg cos y� CvmEGrLavm ÿ Cm1EGrLur

@ur
@z

ÿCm2rLu
2
r

@EG
@z
� 3

8
EG

CD

Rb
rLu

2
r ÿ 2ELrL

fLw
DH

uL j uL j �129�
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rGEG
DGuG
Dt
� ÿEG @pL

@z
� EG

@

@z
�CprLELu

2
r � � CrrLu

2
r

@EG
@z

ÿ @

@z
�CirLEGu

2
r � � EGrGg cos yÿ CvmEGrLavm � Cm1EGrLur

@ur
@z

�Cm2rLu
2
r

@EG
@z
ÿ 3

8
EG

CD

Rb
rLu

2
r ÿ 2EGrG

fGw

DH
uG j uG j : �130�

To eliminate the pressure gradients, we divide Eqs. (129) and (130) by rLEL and rLEG
respectively, and subtract one from the other:�

r�G �
Cvm

EL

�
DGuG
Dt
ÿ
�
1� Cvm

EL

�
DLuL
Dt
� 2

�
CpEL � Cr

EG
EL
ÿ Ci � Cm1

2EL

�
ur
@ur
@z

ÿ
�
2Cp ÿ 2EG � EL

EGEL
Cr � Ci

EG
ÿ Cm2

ELEG

�
u2r
@EG
@z

ÿ 3

8

CD

ELRb
u2r � � fLw j uL j uL ÿ fGw j uG j uG� �131�

where r *
G=rG/rL.

If we rewrite Eqs. (113), (114) and (131) in matrix form, we obtain the one-dimensional
system of equation as,

A
@F
@t
� B

@F
@z
� c �132�

where

F,
EG
uG
uL

0@ 1A

c,
0
0
co

0@ 1A

A,
1
1
0

0
0

r�G � Cvm

EL

0
0

ÿ
�
1� Cvm

EL

�
0BB@

1CCA

B,

uG EG 0
uL 0 ÿEL
B1u

2
r

�
r�G � Cvm

EL

�
uG ÿ B2ur ÿ

�
1� Cvm

EL

�
uL � B2ur

0BB@
1CCA
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B1,2Cp ÿ 2EG � EL
EGEL

Cr � Ci

EG
ÿ Cm2

ELEG

B2,2

�
ELCp � EG

EL
Cr ÿ Ci � Cm1

2EL

�
co,ÿ 3

8

CD

ELRb
ur j ur j � 2

DH
� fLw j uL j uL ÿ r�GgGw j uG j uG� � �r�G ÿ 1� g cos y

The system's characteristics (i.e. the eigenvalues, l) can be found by solving:

det�Bÿ lA� � 0: �133�
Using the de®nitions of the system matrices, we obtain the characteristic question as:

EL�lÿuG�
��

r�G �
Cvm

EL

�
�lÿ uG� � B2ur

�
�EG�lÿuL�

��
1� Cvm

EL

�
�lÿ uL� � B2ur

�
ÿ ELEGB1u

2
r � 0: �134�

If we de®ne,

l�,
lÿ uL
uG ÿ uL

the characteristic equation becomes,

a1l
�2 � a2l

� � a3 � 0; �135�
where

a1 �EL
�
r�G �

Cvm

EL

�
� EG

�
1� Cvm

EL

�

a2 �2
�
ÿ EL

�
r�G �

Cvm

EL

�
� B2

2

�

a3 �EL
�
r�G �

Cvm

EL

�
ÿ ELEGB1 ÿ ELB2:

Solving Eq. (135) for l*,

l�2 � V�2
�����������
u�=t�

p
; �136�

where

V� � EL
�Cvm ÿ B2=2� r�GEL�
ELEG � Cvm � r�GE

2
L

�137�

t� � ELEG � Cvm � r�GE
2
L �138�
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u� � E2L
�Cvm ÿ B2=2� r�GEL�2
ELEG � Cvm � r�GEL

ÿ EL�ELr�G � Cvm ÿ ELEGB1 ÿ ELB2�: �139�

Interestingly, the eigenvalues are always complex for the coe�cients given in Eq. (128).
However, as can be seen in Fig. 3, the two-¯uid model is well-posed in the interval,
0< EG<0.19, if we use the following constitutive coe�cients: C vm=0.5, Cp=0.5, Cr=0.2,
Ci=0.3, Cm1=Cm2=0.1. It is interesting to note that the well-posed region increases with
the increasing values of the interfacial pressure di�erence associated with helical orbits (e.g.
Cp=1.0; Lance and Bataille, 1991). It should be noted that the interfacial pressure di�erence
is a function of two-phase Weber number when the bubble is not spherical (Park and Choi,
1997). Indeed, the characteristic speed with increased values of Cp agrees well with the void
wave data as shown in Fig. 6.
As shown in Fig. 4, when ®xing Cp=0.5, the system's characteristics also vary with di�erent

values of the virtual mass (C vm), the two-phase Reynolds stress (Cr), the interfacial stress (Ci).
Interestingly, a reduced value of the virtual volume coe�cient (C vm) was found to dramatically
increase the well-posed region. The system's characteristics are not very sensitive to the bubble-
induced Reynolds stress, which is in contrast to the results of some previous studies (Pauchon
and Banerjee, 1988) in which a more simpli®ed two-¯uid model was used.
Reduced values of the interfacial stress coe�cient (Ci) increases the well-posed region. This

implies that interfacial momentum transfer in two-phase ¯ow plays an important role in the
transient response of a two-¯uid model. It should be noted that the void fraction gradient

Fig. 3. The e�ect of Cp on the system's characteristics.
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parameters in the interfacial momentum transfer, Cm1 and Cm2 were found to also be
important in controlling the system's void wave characteristics.

6. Linear void wave analysis

Let us now investigate the dispersion characteristics of the two-¯uid model presented herein.
To this end, we introduce a perturbation in two-¯uid variables such that,

w � wo � w 0; �140�
where w represents each two-¯uid state variable, the subscript o denotes the steady-state and
the prime ( 0) a small perturbation.
Inserting Eq. (140) into Eqs. (113)±(116), we obtain the linearized system of conservation

equations as:

@E 0L
@t
� uLo

@E 0L
@z
� ELo

@u 0L
@z
� 0 �141�

@E 0G
@t
� uGo

@E 0G
@z
� EGo

@u 0G
@z
� 0 �142�

Fig. 4. System's characteristics for di�erent constitutive coe�cients.
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Fig. 5. Kinematic wave speed and characteristics.

Fig. 6. Characteristics/kinematic void wave speeds and void wave speed data.
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ELo
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@z
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@E 0L
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� �M
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Li �

EGo
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�d�
Lio

E2Lo
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4

DH
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t 0Lw
ELo
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E2Lo
E 0L

�
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rG
DGu

0
G

Dt
� ÿ @p

0
Li

@z
ÿ tReLio

EGo

@E 0G
@z
� @

@z
�t 0G � tReG � s 0s� �

�tGo � tReGo � sso�
EGo

@E 0G
@z

ÿ �M
�nd� 0
Li �M

�d� 0
Li �

EGo
�M

�d�
Lio

E2Go

E 0G ÿ
4

DH

�
t 0Gw

EGo
ÿ tGwo

E2Go

E 0Go

�
: �144�

If we divide Eqs. (143) and (144) by rL and subtract one from the other to eliminate the
pressure gradient, we obtain the combined momentum equation as,

r�G
DGou

0
G

Dt
ÿDLou

0
L

Dt
� ÿ 1

rL

@Dp 0Li
@z
ÿ DpLio@E 0L

rLELo@z
ÿ tReLio
rLEGoELo

@E 0G
@z

� 1

rL

@

@z
�t 0G � tRe

0
G � s 0s ÿ t 0L ÿ tRe

0
L � �

�tGo � tReG � sso�
rLEGo

@E 0G
@z

ÿ ��tLo � tReLo��
rLELo

@E 0L
@z
ÿ �M

�nd� 0
Li �M

�d� 0
Li �

rLEGoELo
�MLio

E2Go

E 0G �
MLio

E2Lo
E 0L

� 4

rLDH

�
t 0Lw
ELo
ÿ tLwo

E2Lo
E 0L ÿ

t 0Gw

EGo
� tGwo

E2Go

E 0G

�
: �145�

To achieve closure, the constitutive relations must be expressed in terms of the state variables,
uL; uG and �E, EG � 1ÿ EL: We note that all perturbations on the right hand side of Eq. (145)
except those associated with non-drag e�ects, are of the form:

F � F�E�E 0 � F �uL�u 0L � F�uG�u 0G; �146�

where

F�v�, @F
@v

����
o

: �147�

The non-algebraic constitutive relations must be treated di�erently. In particular, the perturbed
form of the non-drag interfacial momentum exchange term can be found from Eq. (117) as:

M
�nd� 0
Li �CvmEGorL

�
DGou

0
G

Dt
ÿDLou

0
L

Dt

�
ÿCm1EGorLuro

@�u 0G ÿ u 0L�
@z

ÿ Cm2rLu
2
ro

@E 0G
@z
: �148�

To eliminate the derivatives of the phasic velocity perturbations, we di�erentiate Eq. (145) and
the perturbed continuity equations (i.e. Eqs. (141) and (142)) with respect to time and space,
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respectively, and combine them. We thus obtain the combined momentum equation as,

K1
@E 0

@t
� K2

@E 0

@z
� K3

@2E 0

@t2
� K4

@2E 0

@t@z
� K5

@2E 0

@z2
� 0; �149�

where

K1,
1

rLEo�1ÿ Eo�
�
M
�d�
Lio�uL�

1ÿ Eo
ÿM

�d�
Lio�uG�
Eo

�

� 1
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�
1

�1ÿ Eo�
�
tLw�uL�
1ÿ Eo

ÿ tLw�uG�
Eo

�
� 1

Eo

�
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�

ÿ 4

rLDHEo
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1ÿ Eo
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Eo
uGo

�
� 4tLwo
rLDH�1ÿ Eo�2

� 4tGwo

rLDHE2o
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1
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�
uGo

Eo
�
�
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�
uLo

1ÿ Eo
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� 1
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�
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uro

�
ÿ 1

rLEo
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uro

�

K5,

�
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Cvm
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�
u2Go
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�
�
1� Cvm

1ÿ Eo

�
u2Lo
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� tReLio
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� 1

rL

�
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�DpLio � tReLo�
1ÿ Eo
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Eo
� rLCm2

Eo�1ÿ Eo� u
2
ro

�

� uLo
rL�1ÿ Eo�

�
ÿ DpLi�uL� � ss�uL� ÿ tReL�uL� �

rLCm1
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uro
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:
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Eq. (149) can be rewritten in a more compact form as:�
@

@t
� a�

@

@z
� T

�
@

@t
� rÿ

@

@z

��
@

@t
� r�

@

@z

��
E 0 � 0; �150�

where

a� � K2

K1
�151�

r2 � ÿ K4

2K3
�

��������������������������������������
1

4

�
K4

K3

�2

ÿ
�
K5

K3

�s
�152�

T � K3

K1
: �153�

It can be shown (Whitham, 1974) that a+, r2 and T are the kinematic wave speed, the two

void wave characteristics and the relaxation time of the void wave perturbation, respectively.

The behavior of the linear void wave may be conveniently examined by evaluating the

dispersion relation. The dispersion relation can be obtained by assuming a modal traveling-

wave solution of Eq. (150) of the form:

E 0 � Eme j�kzÿot� �154�
where k and o are the wave number and the angular frequency, respectively.

Inserting Eq. (154) into (150), we obtain the void wave's dispersion relation as,

j�oÿ a�k� � T�oÿ rÿk��oÿ r�k� � 0: �155�
If we consider the region where Eq. (150) is hyperbolic (i.e. where r2 are real), the celerity, C E,

of the void wave perturbation for traveling waves (i.e. when k is real) can be found by solving

the following coupled equations:

oI � 1

2T

�
a� ÿ �r

CE ÿ �r
ÿ 1

�
�156�

o2
R �

C 2
E

4T 2

� �a� ÿ �r �2 ÿ �CE ÿ �r �2
�CE ÿ �r �2�CE ÿ rÿ��CE ÿ r��

�
; �157�

where

o �oR � jo1

CE �oR=k

�r � r� � rÿ
2

:
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One ®nds from Eq. (157) that void wave dispersion is pronounced for large values of the
relaxation time (T ), since the wave speed is strongly dependent on the angular frequency (oR)
when the relaxation time is large.
It has been found (Park et al., 1990a) that Eqs. (156) and (157) have two solutions for C E

for a speci®ed value of angular frequency, oR. The faster void wave (C+
E ) is the predominant

one and it yields the classical kinematic void wave speed (a+) in the limit of zero frequency,
where the damping also vanishes. The other one is a complementary void wave, (C ÿE ), which is
slower than C+

E and has relatively large damping. A complementary void wave speed (a ÿ ) can
be found from Eq. (157).

lim
oR40

CÿE � aÿ � r� � rÿ ÿ a�: �158�

The well-known stability criteria (Whitham, 1974) for the C+
E wave can be recovered by noting

that the damping coe�cient given by Eq. (156) will be negative if,

rÿ < a� < r�: �159�
The kinematic void wave speed can be obtained using Eq. (151) and the constitutive relations
given by Eqs. (118), (124) and (125):

A��,
a� ÿ uLo
uGo ÿ uLo

� 1ÿ nEo; �160�

where

n �
� 3

CDo

Rb
ÿ uro

CD�uL�
Rb
� �1ÿ Eo� CD�E�

Rb
� 32�1ÿEo�tLwo

3rLu2roDH

2
CDo

Rb
ÿ Eouro

CD�uL�
Rb
� �1ÿ Eo�uro CD�uG�

Rb
� 64EotLwo

3rLu2roDH

�
: �161�

If we use the interfacial drag coe�cient given by Eqs. (58) and (59), we obtain,

n � 7=4 �162�
for distorted bubbles (Harmathy, 1960), and,

n �
� 2:0� 2:5mm � �0:275� 0:0625mm�Re0:75b �

�
2�1�Eo�tLwoRb

4:5rLu2roDH

�
Reb

1� 0:1750Re0:75b �
�

2EotLwoRb

2:25rLu2ro
DH

�
Reb

�
�163�

for undistorted spherical bubbles (Ishii and Zuber, 1979).
The void wave characteristics can be found by inserting the appropriate constitutive relations

into Eq. (152). As expected, the characteristics obtained by this dispersion analysis are the
same as those obtained by the system's eigenvalue analysis in the previous section, Eq. (136).
The dispersion analysis results are more general than those from an eigenvalue analysis,

since the dispersion analysis includes all possible frequency dependent propagations of di�erent
order. Their interaction is as indicated in Eq. (150); in particular, the ®rst-order waves are the
kinematic waves and the second order waves are the characteristics.
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If we neglect the wall shear in Eq. (163), we ®nd that 1.7< n<3.0 for all possible values of

the bubble Reynolds number, Reb, for undistorted spherical particles. To bound the

possibilities, the dimensionless kinematic wave speed for n=1.7 and 3.0 is shown in Fig. 5

along with the corresponding characteristics. According to the stability criteria given in

Eq. (159), the kinematic wave is stable for all possible values of Reb until A*
+ intersects l*

+.

The relaxation time can be found from Eq. (153) as:

T � Rb

9uro

�Eo�1ÿ Eo� � Cvm � r�G�1ÿ Eo�2�Reb�
1� 0:1750Re0:75b �

�
2EotLwoRb

2:25rLu2ro
DH

�
Reb

� : �164�

As discussed earlier, the dispersion relation yields a complementary kinematic void wave. If we

use Eq. (158), the dimensionless form of the complementary kinematic void wave speed is

given by:

A�ÿ �
aÿ ÿ uLo
uGo ÿ uLo

� l�� � l�ÿ ÿ A��; �165�

where A *
2 are given by Eq. (136). The nondimensional complementary kinematic speed given

by Eq. (165) is also shown in Fig. 5 for the two limiting values of n.

The temporal damping of the complementary kinematic wave can be found from Eqs. (156),

(158) and (164) as:

oI � ÿ 9uro
Rb

�
1� 0:1750Re0:75b �

�
2EotLwoRb

2:25rLu2ro
DH

��
Reb

�Eo�1ÿ Eo� � Cvm � r�G�1ÿ Eo�2�Reb
�166�

It was found (Park et al., 1994) that the damping of the complementary kinematic wave was

large for most two-phase ¯ows.

It should be noted that, to date, no experimental veri®cation exists of the presence of the

complementary void wave. However, since the intersection of the eigenvalues (i.e. where

l*
+=l*

ÿ ) signals the onset for ill-posedness, the complementary wave speed at that point is

A�ÿ � 2r�� ÿ A��: �167�
Thus, the onset of ill-posedness is, in principle, measurable if both A*

+ and A *
ÿ can be

measured.

The characteristics and the kinematic wave speed derived here have been compared against

experimental data (BoureÁ , 1988; KytoÈ maa and Brennen, 1991). As shown in Fig. 6, the

characteristics (with C vm=Cp=0.5, Cr=0.2, Ci=0.3, Cm1=Cm2=0.1) and the kinematic

wave speed of distorted bubble drag law agree well with the experimental data at low void

fraction region (i.e. 0< EG<0.15). As the void fraction is increased, however, the data and

the theory have large discrepancy since the assumptions used in this derivation may not be

valid anymore.
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7. Nonlinear void wave analysis

When the magnitude of the disturbances in two-phase ¯ow is large, the linear void wave

approximation is no longer appropriate for describing void wave propagations. It is known

that many important nonlinear void wave phenomena occur in two-phase ¯ow, for example,

pool swell (Vea and Lahey, 1978). Surprisingly, nonlinear void waves have only been studied

by a few authors (Park et al., 1990b; Haley et al., 1991; Lahey, 1991).

Let us consider a one-dimensional coordinate system moving at celerity, Cs. Then, we may

obtain the relationship between the physical and the moving coordinate variables using the

following transformations:

z � zÿ Cst: �168�

Using Eq. (168), we can recast the one-dimensional system of equations, Eq. (132), into the

moving coordinate system as,

A
@F
@t
� �Bÿ CsA� @F

@z
� c: �169�

If we consider only time-invariant, fully-developed solutions in z±t plane, we may neglect the

transient term in Eq. (169) to obtain:

�Bÿ CsA�dF
dz
� c: �170�

Since we are interested in void fraction propagation, we obtain the void wave equation by

taking the ®rst vector component of

dF
dz
� �Bÿ CsA�ÿ1c; �171�

which, as shown in Appendix, is given by,

dE
dz
� G�E; uL; uG;Cs�

H�E; uL; uG;Cs� ; �172�

where

H�E; uL; uG;Cs� � �r
�
G�1ÿ E� � Cvm�
�1ÿ E� �Cs ÿ uG�2

� �1ÿ E� Cvm�
�1ÿ E�2 �Cs ÿ uL�2 � B2ur

�
Cs ÿ uG

E
� Cs ÿ uL

1ÿ E

�
ÿ B1 j ur j ur �173�
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G�E; uL; uG;Cs� � 1

2�1ÿ E�DH

�
3

8

DH

Rb
CD j ur j ur ÿ fw j uL j uL

�

��1ÿ r�G�g cos y; �174�
and B1 and B2 are given by Eq. (132).
As can be seen in Appendix, the system's characteristic equation, that is, det(Bÿ CsA)=0,

is equivalent to,

H�E; uL; uG;Cs� � 0: �175�
If we solve Eq. (175) for the celerity, Cs, we obtain,

C�s,
Cs ÿ uL
uG ÿ uL

� V�2
�����������
u�=t�

p
; �176�

where V*, u* and t* are identical to the expressions given by Eqs. (137)±(139), respectively.
Therefore, we ®nd that if we select the speed of the moving coordinate system the same as the
system's characteristics, the void fraction gradient may become in®nite in the speci®ed frame of
reference. Since an in®nite void fraction gradient is possible only for a sharp discontinuity in
the void fraction pro®le, one may obtain the shock solutions by selecting C *

s =l* (Haley et al.,
1991).
Similarly, since the void fraction gradient vanishes in Eq. (172) when

G�E; uL; uG;Cs� � 0 �177�
the roots of Eq. (177) can be recognized as the steady-states.
To identify the steady-states in terms of void fraction, we must consider phasic continuity. If

we subtract the second from the ®rst vector components of Eq. (170), we obtain,

d

dz
�EuG � �1ÿ E�uL� � 0: �178�

Integration of Eq. (178) yields the result that the total volume ¯ux, j, is a conserved quantity in
the z±E plane. That is,

j,EuG � �1ÿ E�uL � constant: �179�
We may obtain another conserved quantity, K by integrating the second vector component of
Eq. (170), which is the gas phase continuity, to obtain:

K,ECs � �1ÿ E�uL � constant: �180�
Using Eqs. (179) and (180), we can obtain the phasic velocities in terms of the void fraction:

uL � Kÿ ECs

1ÿ E
�181�

uG � Cs � jÿ K

E
: �182�
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Inserting Eqs. (181) and (182) into Eq. (174), we obtain,

G�E� � 1

2�1ÿ E�DH

�
3

8

DH

Rb
CD�E�

��
Cs ÿ K

1ÿ E
� jÿ K

E

�2

ÿ fw

�
Kÿ ECs

1ÿ E

�2

: �183�

Unfortunately, an analytic expression of the zeroes of G(E) is not possible. However, it
has been found numerically that G(E) has at most two zeroes within the range of
0< E<1, for all possible values of j, K, Cs and interfacial drag, n. We denote those
zeroes by E1 and E2.
Since j and K have been found to be conserved quantities, we have, from Eqs. (179) and

(180),

E1uG1 � �1ÿ E1�uL1 � E2uG2 ÿ �1ÿ E2�uL1 �184�

E1Cs � �1� E1�uL1 � E2Cs � �1ÿ E2�uL1: �185�
Solving Eq. (185) for Cs, we obtain:

Cs � �1ÿ E1�uL1 ÿ �1ÿ E2�uL2
E2 ÿ E1

� jL1 ÿ jL2
E2 ÿ E1

: �186�

It is interesting to note that the celerity given by Eq. (186) is the same as the continuity shock
speed derived from drift±¯ux theory by Wallis (1969).

Also, if we neglect wall friction, the shock speed referenced to the liquid phase velocity can
be found from Eqs. (177) and (183)±(185) as,

Cs ÿ uL1
uG1 ÿ uL1

� 1ÿ E2
E2 ÿ E2

�
E2

�����������������������������
�1ÿ E2�CD�E2�
�1ÿ E1�CD�E1�

s
ÿ E1

�
: �187�

Another form of the shock speed can be found by solving G(E1)= G(E2)=0 with Eqs. (184)
and (185), resulting in:

Cs ÿ j �
�������������������������������������
16
3 Rbcos y�1ÿ r�G�

q
�1ÿ E2�=E2 ÿ �1ÿ E1�=E1

�
1ÿ E1
E2

��������������
1ÿ E1
CD�E1�

s
ÿ 1ÿ E2

E1

��������������
1ÿ E2
CD�E2�

s �
: �188�

Thus, Eq. (188) can be used to determine the nonlinear void wave speed referenced to the
center of volume velocity ( j ) when a step change of void fraction is speci®ed.

As a special case, the quasi-static linear kinematic wave speed can be found from Eq. (187)
when the void fraction change is small enough. That is,

A���E� � lim
E24E1�E

Cs ÿ uL1
uG1 ÿ uL1

� 1ÿ nE; �189�

where

n � 3CD � �1ÿ E�CD�E�
2CD

: �190�
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This agrees with the result of the linear analysis, Eqs. (160) and (161), if we assume that the
interfacial drag coe�cient is only a function of void fraction [i.e. CD(uL)

=CD(uG)
=0] and that

wall friction is small.
It should be noted that when the interfacial drag law includes the phasic velocities (e.g.

Eq. (59)), we need the expression for K to relate the phasic velocities with void fraction.
Since the total volume ¯ux is assumed to be known, K can be obtained by solving

G(E1)= G(E2)=0 simultaneously, yielding:

Kÿ j �
���������������������������������������
18
3 gRbcos y�1ÿ r�G�

q
�1ÿ E2�=E2 ÿ �1ÿ E1�=E1

�
�1ÿ E1�

��������������
1ÿ E1
CD�E1�

s
ÿ �1ÿ E2�

��������������
1ÿ E2
CD�E2�

s �
: �191�

Consequently, we can obtain the phasic velocities in terms of void fractions using Eqs. (181),
(182), (188) and (191).
If we eliminate the phasic velocities using conserved quantities, and Eqs. (181) and (182), we

may obtain another form of Eq. (172), where void fraction is the only dependent variable:

dE
dz
� G�E�

H�E� : �192�

Integrating Eq. (192) by separation of variables, we obtain an implicit expression for the void
fraction pro®le in the z±E plane as,

z �
� E

�E

H�E 0�
G�E 0� dE

0; �193�

Fig. 7. Nonlinear void wave solutions with and without virtual mass.
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where

�E � �E1 � E2�
2

E1 < E < E2;

and z is taken so that z=0 at E= E.
Thus, the void fraction pro®le determined by Eq. (193) propagates at celerity, Cs, given by

Eq. (188) when the void fraction is changed from E1 to E2 (or, alternatively, from E2 to E1)
without variation of the total volume ¯ux, j.

Moreover, since we consider only time-invariant void waves, the resulting, solutions should
be understood as being the fully-developed void wave pro®le for some speci®ed initial and ®nal
conditions.

If we consider Eq. (193), we ®nd that the void wave pro®le breaks (i.e. the solution is
multivalued in the z±E plane), when,

E1 < Eo1; Eo2; . . . < E2 �194�
where E o1, E o2, . . . are the roots of H(E)=0. More speci®cally, possible nonlinear void wave
pro®les, which depend on the integrand of Eq. (193). When H(E) has zero between E1 and E2,
the void wave pro®le breaks, which must be ®tted to be a meaningful shock solution
(Whitham, 1974). In contrast, when H(E) has no zeroes between E1 and E2, the void wave pro®le
is a soliton (i.e. a smooth but time invariant, propagating solution).

Fig. 8. Nonlinear void wave solutions at atmospheric and pressurized system (i.e. p=15.5 MPa) conditions.
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Theoretically (Whitham, 1974), wave breaking occurs when the propagating wave speed, Cs,
is in between the larger characteristic speed of the initial state (i.e. conditions ahead of the
shock, 1) and that of the ®nal state (i.e. the conditions behind the shock, 2). That is,

�r��1 � �l��ur � uL�1 < Cs < �l��ur � uL�2 � �r��2 �195�
when E1> E2.
If we rearrange Eq. (195) using Eqs. (181), (182), (188) and (191), we obtain the condition

for nonlinear void wave breaking as:

l��E2�
1ÿ l���E2�

�1ÿ E2�E1 < E2 ÿ E1

1ÿ
����������
CD�E1�
CD�E2�

q �
1ÿE2
1ÿE1

�3=2
<

l��E1�
1ÿ l���E1�

�1ÿ E1�E2: �196�

Using the solutions of Eq. (193) with an undistorted bubble drag law (n=3.0), void wave
pro®le solutions with and without virtual mass are shown in Fig. 6. As can be seen, the virtual
mass force reduces the void shock strength signi®cantly. This observation is in agreement with
that of Haley et al. (1991).
Nonlinear void wave solutions with two di�erent values of the density ratio (r *

G) are shown
in Fig. 7. When r *

G=0.14, which is typical for the primary system pressure in PWR, is used,
the void shock solitons do not change their shape signi®cantly.

It is found that increased values of the interfacial stress make nonlinear wave solutions
possible for a wider range of void fraction. However, the two-phase Reynolds stress does not
change the properties of nonlinear void waves signi®cantly.
The void fraction gradient parameter in the interfacial momentum exchange, Cm2, was found

to be crucial in determining the behavior of nonlinear void waves.
The results of the nonlinear analysis imply that two-¯uid model closure relations can be

independently assessed and/or developed by investigating ®nite amplitude void waves. This is
signi®cant, since independent means are required for complete two-¯uid model assessment.

8. Conclusion

An ensemble-averaged two-¯uid model for adiabatic two-phase ¯ows has been derived and
used for the analysis of void wave propagation. A mechanistic treatment of the phasic interface
has been found to be important for properly modeling interfacial momentum exchange
phenomena. That is, the interfacial stress should be taken into account properly when the
phasic momentum jump is considered.
Based upon this study, the continuous phase interfacial pressure di�erence and the void

fraction gradient term in the non-drag force are found to be crucial in determining the
behavior of non-linear two-phase bubbly ¯ows. Linear and nonlinear void wave analysis
reveals that void waves can be used as a means of assessing the closure relations for bubbly
¯ows and ¯ow regime transition. The authors hope this study will promote further research on
two-¯uid modeling as well as the investigation of void wave phenomena.

J.-W. Park et al. / International Journal of Multiphase Flow 24 (1998) 1205±1244 1241



Appendix A

From the de®nitions of two-phase system matrices, Eq. (132), we obtain:

Bÿ CsA �
CGs EG 0
CLs 0 0

BLu
2
r

�
r�G � Cvm

EL

�
CGs ÿ B2ur ÿ

�
1� Cvm

EL

�
CLs ÿ B2ur

0BB@
1CCA;

where

CGs,uG ÿ Cs

CLs,uL ÿ Cs:

The inverse of (Bÿ CsA) is given by,

�Bÿ CsA�ÿ1 � 1

D

B11 B12 B13

B21 B22 B23

B31 B32 B33

0@ 1A;

where

D � det�Bÿ CsA� � EGELH�E; uL; uG;Cs� �A1�

H�E; uL; uG;Cs� � r�G��1ÿ E� � Cvm�
�1ÿ E� �Cs ÿ uG�2

� 1ÿ E� Cvm

�1ÿ E�2 �Cs ÿ uL�2 � B2ur

�
Cs ÿ uG

E
� Cs ÿ uL

1ÿ E

�
ÿ B1 j ur j ur �A2�
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B11 �ÿ EL

�
r�G �

Cvm

EL

�
CGs � B2ELur

B12 �EG
�
1� Cvm

EL

�
CLs ÿ B2EGur

B13 �ÿ ELEG

B21 �
�
1� Cvm

EL

�
C2

Ls ÿ B2urCLs ÿ B1EL j ur j ur

B22 �ÿ
�
1� Cvm

EL

�
CGsCLs � B2urCGs

B23 � ELCGs

B31 �
�
r�G �

Cvm

EL

�
CGsCLs ÿ B2urCLs

B32 �ÿ
�
r�G �

Cvm

EL

�
C2

Gs � B2urCGs � B2EG j ur j ur

B33 �ÿ EGCLs:
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