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Abstract

A three-dimensional two-fluid model has been developed using ensemble-averaging techniques. The
two-fluid model was closed for adiabatic two-phase bubbly flows using cell averaging which accounted
for the dispersed phase distribution in the region of the averaging volume. The phasic interfacial
momentum exchange includes the surface stress developed on the interface which is induced by the
relative motion of the phases. The surface stress has been obtained by treating the interface as an elastic
spherical shell. A characteristic analysis revealed that the one-dimensional system of two-fluid
conservation equations which were derived is well-posed over a range of void fractions with increased
value of the interfacial pressure. The propagation of void fraction disturbances (i.c. the void wave) has
also been analyzed by performing a dispersion analysis. The speed, stability and damping of the linear
void waves have been obtained. To study finite amplitude void waves, the system of equations has been
transformed into a moving coordinate system, and asymptotic solutions of the transformed nonlinear
void wave equation have been obtained. The speed and the stability of different types of nonlinear void
waves have been found to be sensitive to the closure relations of the two-fluid model. Among the
different constitutive parameters, the interfacial pressure difference in the continuous phase and the void
fraction gradient in the non-drag force are found to be the most significant in determining behavior of
void waves in bubbly flows. The derived void wave speed agrees well with the void wave data of bubbly
air—water flow. © 1998 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Different averaging techniques have been proposed for deriving two-fluid models. The time-
average technique has been extensively studied by Ishii (1975) and has been widely used by
many researchers. Nigmatulin (1979) derived a volumetric averaged set of balance equations
which were constituted by using the concept of cell averaging. Delhaye (1976) developed a
space/time averaging technique for one-dimensional two-phase flows, and Drew and Lahey
(1989a) developed a three-dimensional two-fluid model using a combination of space and time
averaging.

An ensemble-averaging technique is the most fundamentally rigorous form of averaging
(Buyevich, 1971; Batchelor, 1970). In the ensemble average process, the ensemble is a set of
flows that can occur at a specified position and time. Thus, the ensemble-averaging may
include all the phasic interactions without specifying the time and length scales, in contrast to
the other averaging techniques. Arnold (1988) developed a multidimensional two-fluid model
using an ensemble-averaging technique.

In this work, a two-fluid model, which is an extension of the model derived by Arnold
(1988), is derived. By considering the probability of a dispersed phase particle’s location within
an averaging volume (i.e. a cell) the two-fluid constitutive relations for adiabatic two-phase
bubbly flows have been derived. The interfacial momentum transfers between the phases have
been found by treating the phasic interface as an elastic spherical shell which experiences the
force induced by the relative motion of the continuous phase.

To assess the validity of the two-fluid model presented herein, limiting steady and transient
situations, in which the void fraction vanishes, have been considered. It is also shown that the
two-fluid model which was derived is compatible with those previously derived two-fluid
models by Geurst (1986), Wallis (1991), and Pauchon and Smereka (1992).

The well-posedness of the two-fluid model which has been derived is studied by considering
the system’s one-dimensional characteristics. The two-fluid model is found to be well-posed
within a range of void fractions when the interfacial pressure is given to be greater than that of
the ideal spherical bubble. If we take the value of the pressure coefficient, C,,, recommended by
Lance and Bataille (1991), i.e. C, = 1.0, the two-fluid model is well posed for a wide range of
volume fraction.

Since the properties of the void wave have been found (Bour¢, 1982; Pauchon and Banerjee,
1988; Park et al., 1990a; Biesheuvel and Gorrisen, 1990; Lahey, 1991) to be sensitive to the
two-fluid model’s closure relations, void wave propagation phenomenon has been analyzed.

Using the void wave dispersion model, the stability, speed and damping of the void wave
have been determined. To analyze finite amplitude void waves, such as void wave shocks and
solitons (Haley et al., 1991; Park et al., 1990b), the system of equations are cast into a moving
coordinates. The speed and the stability of different nonlinear void waves has been found from
the nonlinear void wave equations.

This study shows that an ensemble-averaged two-fluid model, which was constituted using a
cell model approximation for dispersed two-phase flows, is appropriate for describing transient
and steady phenomena in dilute dispersed two-phase flows.
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2. Ensemble-averaged two-fluid equations

The ensemble-averaged two-fluid conservation equations for adiabatic two-phase flows can
be obtained by averaging the phasic local instantaneous mass and momentum conservation
equations (Drew, 1983; Lahey and Drew, 1990) as:

Mass conservation.:

L @p) + V- (apn) = 0. (1)

Momentum conservation.

]
% (expeVi)+V - (ekprvievi) = —Viepr) + V - [ee(tie + )]
+ekpig + My ()

where p ., pr and 7, are averaged variables weighted with the phase indicator function, e.g.

Pk éﬁ/ €ks 3)
where p, is the exact density. Also, v, is the mass-weighted average velocity, defined by

Vi e M/ €kP “4)
where, v, is the exact velocity field. Also,

ot & ®)

M2 — Ty - Vi, (6)
and the phase indicator function has been defined as

. ~ | 1, if phase-k is found at (x, ?)
1(X, 1) = { 0, otherwise :

We note that the gradient of the phase indicator function can be expressed as:
Vi(X, ) = —ngok(X, 1) (7)

where ny is the unit normal vector and J,(x, ¢) is a Dirac delta function.

If we treat the phasic interface as an elastic shell of infinitesimal thickness which experiences
the stress induced on it by each phase, we obtain the momentum equation for the shell (i.e. the
interface) as:

V-T, =0, (®)
where
T2 1 [Vu + (Vu) ']+ A(V - w)l ©)

and, u, us and /g are the displacement and the Lamé constants, respectively.
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To obtain the so-called momentum jump condition between the phases, we must appropriately
average the interfacial momentum equation, Eq. (8). If we define the indicator function for the
interface (i.e. the shell) as:

A | 1, if the shell is found at (x, 7)
1%, 1) = { 0, otherwise

we obtain the averaged form of Eq. (8) as

V(1 Ts) =T - V. (10)

The shell indicator function can be related to the phasic indicator functions for the gas (G) and
the liquid (L) phases as:

Xs=1=2c—x (1)
Using Eq. (11), we can rearrange Eq. (10) as

V. (4sTs) = =Ts - Vyg —Ts - Vi (12)

or, using Eq. (7).

V- (4 Ts) = Ts - ngoG(x, 1) + T - nLoL(X, 1). (13)

We now may introduce an assumption that the normal component of the stress at the surface
of the shell (i.e. the interface) is continuous, that is:

(To)in - 06 = Tai - ng (14)
at the inner surface, and
(Ts)ex -mL = Ty - (15)

at the outer surface. Here, the subscripts ‘in” and ‘ex’ indicate the interior and the exterior
surfaces of the shell, respectively.
Inserting Eqgs. (14) and (15) into Eq. (13), we obtain

V- (4Ts) = TG - ngoG(X, 1) + T - nLoL(x, 1) (16)

or, equivalently,

V(1 Ts) ==Tg - Vg —TL- VL. (17)

If we use the definitions given by Eq. (6), we obtain

Mgi +Mii = V- (1Ts) = V- (1 To), (18)

which can be considered to be a momentum jump condition between the phases.

As can be seen in Eqgs. (3)-(6) and (18), the terms which arise from the ensemble averaging
process do not explicitly involve the basic two-fluid state variables (e.g. pi, vi and ¢;). Thus,
these equations must be constituted in order to achieve closure. Moreover, it is important to
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Fig. 1. A typical averaging cell.

realize that it is with these closure laws that the microscale information which was lost during
the averaging procedure is reintroduced (Alajbegovic, 1994).

3. Constitutive relations for bubbly flows

The ensemble averaged two-fluid equations can be constituted by using the cell averaging
technique of Arnold (1988) with the following assumptions:

(1) The fluids are inviscid, incompressible and have constant thermophysical properties;
(i) The dispersed phase can be treated as a dilute dispersion of spheres.
(ii1) The nonuniformity in the distribution of the dispersed phase is small.

In the cell model ensemble average, the ensemble is that set of flows that can occur at location
x with the center of the spherical bubble occupying different positions within the cell (see
Fig. 1). In this case, the average is performed by integrating over the variable, z, that is, the
possible positions that the center of the bubble can have. The center of the bubble, z, can lie
anywhere inside the sphere of radius R. We assume that the distribution of positions is such
that,

= 2 (1 Tt

EG(X, l)

4. p3
3nR

(19)

is the probability of finding a bubble in a volume dJ surrounding the point x where

x’ = x— z. This is approximately equal to

dV eg(z, 1)
%nR3 eg(x, 1) '
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The factor eg(z, t)/eg(X, f) is the appropriate multiplier to change the probability of finding the
bubble at x to the probability of finding the bubble at x to the probability of finding the
bubble at z.

Note that the ‘cell model’ accounts to the influence of one bubble on the quantities
calculated at a point x. Thus, the method ignores effects of order ¢g. In addition, we have
systematically ignored terms resulting from products of gradients. These terms are of order
(a/R)* smaller than terms retained.

For inviscid, irrotational flows, the flow potential ¢ satisfies

Vo =0 (20)
and the corresponding pressure in the continuous phase is given by the transient Bernoulli
equation:

ap 1]_ |
PL = po — —+=|V . 21
L =Poo pL(at+2'¢) 21)

If we consider a spherical bubble of radius ‘a’ moving with velocity vg (z, 7) in a flow field,
vio(?) + X’ - Vi, the appropriate velocity potential is (Voinov, 1973):

2 3 1 3
dxin)=——da—= () vo X'+ ¢+ |1+ (=) |V, x’
r’ 2\ r 2\

20 9Y Novg,  xx 22
+[§+§<7>] b, X'x' ... (22)

where ' = |x/| and ¢, is the flow potential at z when the bubble does not exist.

If we assume that the average flow around the bubble can be approximated by a uniform
velocity gradient, we may expand ¢, as,

b, =0 — Vo' -x"+ ... (23)

where ¢’ is the flow potential at x for the undisturbed flow.
Using Eq. (23), we may rewrite Eq. (22) as:

L ad . 1(a 3 , 1 a\’® 2(a\’ .,
ox;z2)=¢p' ——a—=|—- )i X' +=|—[=) +=( =) |[VVo : xxX"+... (24)
r’ 2\ 7 2 r’ 3\
where,
Vi £vg — V¢ (25)

is the relative velocity of the bubble at the sphere center.
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The local velocity of the continuous phase can be obtained from Eq. (24) as,

VL(x; 2) =V(x; 2)
B 1 a\’T30v x)x’' 1/a\’ , [5(Vv-x'x)
vy () e e () [ 20

V=vV¢. (27)

where,

Note that the liquid velocity, in the absence of the bubble, can depend on x. Moreover, the
bubble velocity v, can depend on position [in this case vy, = vu(z)], and the volume fraction of
the gas phase can also depend on position. The cell model provides a means of accounting for
all these effects.

To average the continuous phase velocity, we place a large sphere (i.e. the cell) of radius, R
centered at x. We then obtain the cell-average velocity of the continuous phase as:

R /
v ;J “ L(x: z)(1—" ‘V€G>dg(r’)dr’. (28)
Qr’) €G

B %TC(R3 - Cl3) a

Evaluating the integral using Eq. (26), we obtain
=V, (29)

where the products of the derivatives may be neglected according to the assumption (ii) made
in this section.

The Reynolds stress for the continuous phase is defined by Eq. (4) as

€LT€e = — LPLVLYL
1 R x’ - Vég>
= —pyvivi (1 — dQ@ ) dr/, 30
%TE(R3 _ a3) Ja JJQ(W) oL L L( G ( ) ( )
where
vy = Vo(x;z) — v (31)

Using Egs. (24) and (31), we obtain

Re 1 €G

= —An —LYr¥r T rI 2
o = = 5L e 30wl (32)

which, for sufficiently small ¢g, reduces to the results previously obtained by Arnold (1988) and
Biesheuvel and Wijngaarden (1984).
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Similarly, the interfacial averaged Reynolds stress is,
Re _ P —
LT = — XLPLVLiVLi
1
” oLV d0(a), (33)
Q(a)

4na?

where v{; is the deviation of the continuous phase velocity at the surface of the sphere (i.e. at
/

r’ = a). (Note that we do not include the variable part of the probability of finding the sphere
at z—it is negligible.)
Evaluating the integral in Eq. (33), we obtain:

1
Ty =— EPL[VrVr + 3(v; - VI (34)

If we introduce Eq. (24) into Eq. (21), we obtain the local pressure in the continuous phase as,

- 1 S a\’ a\’ Ve X
p(x;1)=po+§< )var-X/—K;) —2<;> }pw o
S 1/a)’ 3/a\ 3(a\° v - X')?
s o ) 2 b
[3/a\ S/a\ 2(a\'l (VV:x'x)-x)
[3(5) () 56) 0

P 2/aN 1 fa\"
+§(,_/> +§<7> _pL(VV:xvr)

3 (a\° a7l (Vv XXV - X))
[3G) () ]

T(a\° 1(a\® — 35
+_(;> +Z(7) ]PL( Vi D X'Vp) (35)

where, the continuous phase pressure if the bubble were not present is:

©, 1
Po=poc — pP’ — 7LV -V (36)
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Thus, the average pressure of the continuous phase is given by:

1 R . x' - Veg
= ;o)1 — dQ@’)ydr'. 37
=g, (1= aerar G7)
Evaluating the integral in Eq. (37), using Eq. (35), we obtain (Arnold, 1988),
1
PL =Do — ZerLVr - Vr. (38)

The continuous phase interfacial pressure (i.e. the pressure at the exterior surface of the
spherical shell) can be found by setting »'= « in Eq. (35), resulting in,

- 1 3. 5 9 5
PLi = Po + 5 PLAVr: er + 5 PL@Ve e — gPLVr Vet gpL(Vr -er)

5 3
+ 3 pLa(VVv :e.e.)(v; - e;) + 3 pra(VV :ewv;)

1 9 5
+ EpLa(er Devp) — ZpL(er ceer)(vr - er) + ZPLQ(VVr Dervr), (39)
where
e =x'/r.

The average interfacial pressure can be defined as,

1 -
=g ||, Auie@. (40)
dna Qa)
Performing the integration in Eq. (40), we obtain,
1
PLi = Po = 7 PLVr Vi “1)

Thus, we obtain the interfacial pressure difference of the continuous phase, from Egs. (38) and
(41), as

1 1
ApLiépLi —pPL = _ZPLELVr V= _ZPL(I - éG)Vr © ¥y, (42)

which agrees with the result obtained by Stuhmiller (1977) when ¢g is sufficiently small.

One may also allow a deviation in the local velocity of the bubble, v,, from the average
velocity of the dispersed phase. However, it has been found (Drew, 1991) that these effects are
negligible when the dispersed phase has a much lower density than the continuous phase (i.e.
gas bubbles in liquid). Thus, in this work we have assumed:

VG = Vp. (43)
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The interfacial momentum source for the liquid phase can be written as

My =pLVy — L Vi

The first term in Eq. (44) can be evaluated as

= 1 - € - Vé(;)
Vi, =—— ell—a dQ(a).
PLVIL %TCRSJL)(G)pL r( G ( )

Using the continuous phase interfacial pressure given by Eq. (39), we obtain:

— 1 |
PLViL :EEGpLan + ZéGpLVr . (va — Vvg)

3 a 5
+=€gpL &vr + —€GPLVr - VVE

2 4
9
- EeGPL[Vr (WG + W) + (V- vo)vi]

2 9
—PoV€G + gpL(Vr : Vr)VEG - EPL(Vr . VEG)Vr,
where
Ay = 9 +v,-V)v 9 +V.V|V
vm — 9 b b 9
and we can interpret the time derivative of the bubble radius as,

. d DGCZ
== V)asd =/,
¢ <3z+VG )a Dt

Using the dispersed phase continuity equation, we obtain,
3 a 1 Dge 1
EPLVrCG " = EPLVr % + EPLVrCG(V “VG)

Using Eq. (49), we can rewrite Eq. (46) as:

1 1 .
PLVIL ==z €GpLavm + —€cprVr - (VVg — Vvg)

2 4
1 Dge 5
+§PLVr(g—ZG+ GV - VG) +ZerLVr : VVrT

9
- %CGPL[Vr . (er + VV;F) + (V : Vr)vr]

1 2
- (pLi + Zvar : Vr) Ve + gPL(Vr -vi)Veg

9
— %pL(vr - Vep)v;.

(44)

(45)

(46)

(47)

(43)

(49)

(50)
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The second term in Eq. (44) quantifies the viscous stress at the exterior surface of the spherical
shell. Thus, one may try to find the local stress field in the liquid, t,, by analyzing the
boundary layer around the spherical shell (Arnold, 1988). However, the viscous stress is only
important when the relative velocity between the phases is small. Instead, the average stress
induced by the motion of the continuous phase, which occurs when the boundary layer around
the bubble separates, is dominant in the range of normal applications of two-phase bubbly
flows. However, this effect is not considered in the inviscid analysis leading to Eq. (50).
Therefore, it appears to be reasonable to introduce an interfacial drag model which includes
both of the local viscous shear and the form drag around the spherical shell.

We may partition the interfacial momentum source for the continuous phase as (Lahey and
Drew, 1990; Ishii and Mishima, 1984):

My éM(L“id) + M(Ldi) + pLiVer — (1 + rff) - Ver, (51)
where,
d . =
MEY 2 (B — pr) "V — G — ) Vi (52)

or,

1 1
Mgd) :EéGpLavm + ZerLVr : (va} — Vvg)

1 D(;EG 5 T
+§var i +eGV-vg +Z€GPLVr VY,

9
- %éGpL[vr (Vv + VV;F) + (V- vo)ve]

3 2
+ mpL(vr -v;)Veg — gpL(Vr - Veg)vy (53)

M2 — G =) Vi + (L — ) OV (54

It is also well known (Drew and Lahey, 1987, 1989b) that a lateral force induced by the
rotational part of the liquid flow field around the sphere (i.e. the so-called lift force) should be
included in the non-drag momentum exchange term.

The lift force was found by Drew and Lahey (1987, 1989b) to be:

MIL“i = CLpregVr X V X v (55)

where, depending on the flow conditions, C; = 0.01—0.5.
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Thus, if we include the lift force in Eq. (53), we obtain,

1 1
M(Lnid) =§€GPLavm + 4 €GPLYr (VV(T} - Wa)

1 Dge 5
+§var(%+ gV - V(;> +Zegvar . erT

9
— EéGPL[Vr (Vv + erT) + (V- vp)v;]

3 2
+1_OPL(Vr “Vp)Veg — gpL(Vr - Veg)Vr

+CLpregVe X V X vL. (56)

For monodispersed bubbly flow, the sum of the viscous shear force and the form drag can be
modeled as,

3Cp

d R —— ~
M@ L — G =) Vi + (G — p) vy = SR,

PLEG | Vi | Vr (57)

where the subscript (d) implies drag. The parameter Cp is an appropriate interfacial drag
coefficient and Ry, is the radius of the bubbles. It should be noted that we may also write,
Cp = 8/3 Ry/Dy f;, where f; is the so-called interfacial friction factor.

Harmathy (1961) proposed a model for the drag coefficient for distorted bubbles as,

_ 4 [GloL—pa) ]

For undistorted spherical bubbles, the interfacial drag coefficient proposed by Ishii and Zuber
(1979) is:

(1 +0.1Re)7)

Cp =24 59
b e, (59)
where
2 | R «
Rep = PL IV 1% e | 0 ¢ (60)
Uy,
o _ (g +041) (61)

(UG + pr)
Arnold (1988) constituted 7 ;, for different values of Reynolds number to obtain,

TLi = 0. (62)
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However, as shown in Eq. (34), this does not imply that the interfacial Reynolds stress, 7 ¢, is
Zero.
The average stress on the interface (i.e. the spherical shell) can be found from

=~ 1 o
T =7 Tydv, 63
=gl ). @

where V is the volume of the shell.
Using Eq. (8), we may rewrite the stress tensor of the shell as

T, = V- (Tx)). (64)

If we insert Eq. (64) into (63), we obtain

- 1 -
1 Ts = TR JJJVS V- (Tx")dV. (65)
Applying the Gauss theorem
= 1 ~ 1 .
Ty =1— - (Tsx")., dQ — - (Tsx"),,dQ(a). 66
7T, %RRSijﬂnL (Fx')er aﬂ-+%nR3JLK®nG (Fx'),d9Aa) (66)

The normal components of the stress at the surfaces of the shell can be taken to be:

ny - (Ty) =0 - TLi = —pring (67)

nG - (Ty), = ng - Tai = —painG, (68)

where the normal component of the phasic viscous shears are assumed small compared to the
phasic pressure. Thus, Eq. (66) becomes:

= 1
T, =
Fs s InR3

~ ’ 1 ~ ’
|| pumxde@ - || fanexanr. (69)
) 3R ) Jow

Evaluating the integral in Eq. (69) using the interfacial pressure of the continuous phase given
by Eq. (39), we obtain,

9 8
1 Ts = 60[ - %pLVrVr + <2OPLVr Vi —(pGi — pLi)> I:|, (70)

where it has been assumed that,

PG = pci = constant.
Alternatively, we can rewrite Eq. (70) using Eq. (41) as:

V- (xsTs) = V- [eg(as + (pGi — pLD)], (71)



1218 J.-W. Park et al. | International Journal of Multiphase Flow 24 (1998) 1205-1244

Fig. 2. The source of interfacial stresses.

where

9 3
0y = pL[ — %Vrvr + E(vr . vr)Ii|. (72)

The source of the average interfacial stress, o, is illustrated schematically in Fig. 2. We see
that an average interfacial stress may arise due to a net unbalanced interfacial force when the
interface is cut by the control volume.

Thus, we obtain the interfacial momentum source for the dispersed phase, using the
interfacial momentum jump condition, Eq. (18) and Egs. (51) and (71), as,

Mgi = =ML + [ec(os + (pci — pLi)D]
or, partitioning into drag and non-drag components,
Mgi = — Mﬁd) — Mg) + (i + ‘Efie) -Ver + V- (eg0s)
+ Vl(ecpai) — €6 VpLi- (73]
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4. Averaged conservation equations

1219

Let us now summarize the averaged conservation equations derived in the previous section,

for adiabatic bubbly flows,

Mass balance:

d

&(GLPL) + V- (eLpLv) =0

d

&(EGPG) + V- (cgpgva) = 0.

Momentum balance:

d
% (eLpLVL)+V - (eLppvivL) = —eLVpL + Ap1iVer
+V - fee(te + 1) + epLg — (tui + 11%) - Ve + M

d .
&(éapGVG)ﬂLV (e6pPGVGVG) = —€6VpG — (tLi + 11¢) - Veg

+V - [eg(zg + réﬁ +09)] + egpgg — M

where
1
PL = Po — ZerLVr - Vp
1
PLi = Po — Zvar Ve = PG

1
ApLi - _ZpLeLvr ©Vr

1 fa
= L f [Veve 4 30 - VoI

Re

1
TLi = — 2_OpL[VrVr + 3(Vr . Vr)I]

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)
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1 1
Mg_nid) :EerLavm + ZerLvr : (VVE — Vvp)

1 D(;EG 5 T
+§var T—I—egv-vG +Zegvar-er

9
- %éGpL[Vr : (VVr + Vv;r) + (V : Vr)vr]

3 2
+ EpL(Vr -v;Veg) — gPL(Vr - Veg)vr

+CLpregVr X V X VL

a9 3Cp
Mii) = §R_b'0L€G | Ve | Vr

Dgvg  Drvp
Aym — -

Dt Dt

9 3
Os = pL[ - 2_0Vrvr +%(Vr : Vr)Ii|

Vi =VG — VL

and T — Tée: G = 0.

(83)

(84)

(85)

(86)

(87)

Combining Egs. (78)—(87) with Egs. (76) and (77) and neglecting the viscous stresses (i.e. T

and 1g), we obtain the phasic momentum equations as,
d 1
5, (CLPLYL)HV - (eLpLVivL) = —a VpL + ApLiVeL + 5 €6pLam

1 1 Dge
+Zegvar . (va — Vvg) +§var(%+ eV - V(;)

| 1
+§pLerr . VVrT — EpLV -(egVrVr) + CLpregVe X VX vp +epr G

3Cph
+§R_pr£Gvr | v |

0 1
5 (ccpYe)+V - (€GpGYGYG) = —€GVPLI — 5 €GPLAVM

2
1 1 DGEG 1
_ZéGpLVr . (VVI} — VVG) — EpLVr(TZ + EGV . VG) — EéGpLVr . VVIT
D
—CLprecVe X V X VL + €GPGE — 5o PLEGY: | Vr |
8 Ry

where terms of higher-order in ¢g have been neglected.

(88)

(89)
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The mixture momentum equation can be found by adding Egs. (76) and (77) as,
d
&@U&WﬁﬁWGW9+V'@thﬂG+€thW@

= —eLVpL + pLiVer — e VpLi + V - (€18 + egas)

+(eGpg + €6PG)E

where 71, 7 and & are neglected.
Noting that from Egs. (81) and (86),

1
Re
€Lty +€gos = —Eegvarvr

we may rearrange Eq. (90) as:

d 1
% (eLpLVL+eGpgYG) + V- (€LpLVLVL + €GPGYGYG + §€GPGVrVr)

= —V(eLpL + €opg) + (€Gpg + €GpL)E.

1221

(90)

o1

92)

It should be noted that to the first order in ¢g, which is in order of accuracy of cell averaging,
Eq. (92) is exactly the same as the mixture momentum equation derived by Wallis (1991).
Moreover, the 1/2V - (egprv,V;) term on the left hand side of Eq. (92) arises due to the

interfacial stress and the continuous phase Reynolds stress, as noted in Eq. (91).

It is also interesting to compare the two-fluid model just derived to one obtained from a
variational approach. Guerst (1986) derived a set of two-fluid equations using a variational

principle. His phasic momentum equations were:
ad
5 (PLELYL)HY - lpravive + PLI(EG )V V]

1
+eLVpg + V[EpL(m(e(;) + o' (eg))vr - vr] = MC°

%(pGEGVG) + V- (pGeaVaVe) + €6 Vpg = —ME,
where
If we rearrange Egs. (88) and (89), we obtain:

0 1
&@Ukﬁ)+v‘&UEWNL+EPHGWW)+QSWL_AmﬂkL:hl

0
% (egpgYe) + V- (cgpgVaVa) + G VpLi = —M

93)

94)

95)

(96)

O7)
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where

1 1
M2 2 cGpram + 5 oLV (VG — Wa)

1 D €G 1
—l—szVr(% + eV - VG> + széc,Vr . VVrT

+CLpregVr X V X VL. (98)

To facilitate comparison with Guerst’s result, we may rewrite Eq. (98) as:
19 1 1 T
M = o (pLEGVr) + 5 V- (pLEGVGYr) + FPLEGY: - Vv

—f—%E(;pLVr (W — Vv + %pﬂ(% +egV- vr> (99)
where Cp. = 1/4 has been used.

If we note that m(¢g) = 1/2¢g for the virtual volume in Eq. (95), we find that the
discrepancy between the two dispersed phase momentum equations consists of the last two
terms in Eq. (99).

We note that for incompressible bubbles, we have

Dgeg
Dt

+egV-vg =0. (100)

Thus, the discrepancy is only in the term

1
M, = ZerLVr : (VV;F — Vv,).
We note that the rate at which M, does work is

1
Vr - Mrot = ZCGPL(Vr : (erT - VVr)) Ve = 0. (101)

Therefore, work done by a term such as M,,, cannot appear in the kinetic energy equation,
and hence cannot appear in the variational equations derived from it. The equations derived
from it are not unique, module terms of the form M,,,.

If we assume that the phasic densities are constant, we obtain, by adding Eqgs. (74) and (75),

V.j=0, (102)
where the volumetric flux is defined as,
jeeve +eava. (103)

One way to assess the validity of the two-fluid model derived herein is to examine the behavior
of the governing equations in limiting cases. To this end, let us consider the situation in the
limit where the average volume fraction of the dispersed phase, ¢, vanishes.



J.-W. Park et al. | International Journal of Multiphase Flow 24 (1998) 1205-1244 1223

Thus, if we neglect ¢g and Veg in Egs. (102) and (103), we obtain
V.vp =0, (104)
which agrees with the continuity equation of single-phase incompressible flows. For this
limiting case, the continuous phase’s momentum equation, Eq. (88), yields:

DLVL
PL Dt

— Ve (105)

It should be noted that Eq. (105) correctly yields the momentum equation of single-phase
inviscid flow.

We can simplify Eq. (89) by expanding the material derivative of the discontinuous volume
fraction as

D d

giG :%—FVG -Veg = —€gV - vg, (106)
where Eq. (75) has been used.

Using Egs. (78)—(80) and (106), we obtain a simplified form of Eq. (89) as:

D(;VG v 1 (D(;VG _ DLVL) 1

Pc—p T YL TP Ty Dr ) TaPLiixVxw

1
_Evar x VX vL + pg8. (107)

Let us now consider the case of a single bubble rising in a stagnant pool of liquid. If the radius
of the pool is very large, we may neglect the average volume fraction of the discontinuous
phase and its derivative. Thus, by combining Egs. (105), (107) and (104) with vp =0, we
obtain,

(PG + %PL) Dg:G = —(pL — PG)E; (108)
where the lateral lift forces are zero in this case since Vx vg =V x v = 0. Eq. (108) is a well
known result for inviscid flows.

Another interesting case is that of a single bubble placed in a large horizontal converging
stream of liquid. If we somehow apply an external force, F.,, to hold the bubble fixed, we
obtain from Egs. (105) and (107),

pLvL - Vvp = —=Vpr (109)

1
0=-VpL +§pLVL - VvL — Fex. (110)

Combining Egs. (109) and (110), we obtain the force necessary to fix the bubble as:
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1 1 3
Fox = (1+5)vaL-VvL=—(1+§>pL=—§VpL. (1
This agrees with the result previously obtained by Taylor (1924) for a spherical particle.

It was pointed out by Wallis (1991) that some averaged two-fluid models have an

inconsistency in predicting F.,. For example, models used by Pauchon and Banerjee (1986),
Arnold (1988) and Park et al. (1994) resulted in:

1 1
Fex = <1 +Z +Z)vaL -Vvp = —2VpL. (112)
The reason for this discrepancy is that these two-fluid models did not include the surface stress
developed on the dispersed particles to maintain the spherical shape of the particle. In this
study, this inconsistency has been removed by properly including the average interfacial stress
(0g) in the two-fluid model.

5. One-dimensional conservation equations and their characteristics

The one-dimensional form of the mass and the momentum conservation equations can be
obtained by considering the z-directional component of the phasic velocities and forces in
Eqgs. (74)—(87) as:

d d
Py (eLpy) + E(ELPLZ"L) =0 (113)
a(c )—I—a(c )=20 (114)
Py GPG 9 GPGUG) =
9 0 pL der, ey
% (éLpLuL)'i'& (eLprug) = —er 5 + ApLi Fr ok e
0 T
+—[eL (L + 18] + eLp g cos O + M(Iflid) + M(]j) — 4 (115)
0z Dy
d ad apL' e 36(‘,
&(GGPG”G)'Fg(erGué) = —¢G 821 — e
0 T
+5-lea(ta + 09)] + capgg cos b — MEY — p 41%, (116)

where 0 denotes the angle between the axial direction, z, and the gravity vector.
The closure relations for this one-dimensional system of equations can be summarized as
follows:

ou
Mglid) = Cym€GPLAvm — mlCGpLura—Zr — Cmopru —Z (117)
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Cp
d
M =2 R PLa L (118)
PL = Po — ppLeGuf (119)
Apri = pri — pL = —CppreLut? (120)
oy = —Cip u? (121)
Re €G
T, =G — | uy | vy (122)
€L
i = —Cepru; (123)
1
TLw = EfprLuL | up | (124)
1
TGw = szwPGMG | ug |, (125)

where, p, would be the local liquid phase pressure if the sphere were not present, and:

ug ouG our. our

vm = —— — | = — 126
hm =T H UG, <az+”L 82) (126)
Uy = UG — UL (127)

1 1 1

Cvm :za Cp:Z, Crzg,
G —i Cn =C —L (128)

1—10 ml — m2—10-

Note that the viscous stresses, 71, and 1, have been neglected.
If we insert the constitutive relations given by Egs. (117)—(125) into Eqgs. (115) and (116), we
obtain:

DLML 8pL 8 28€L
preup = —es = Goprat oo+ Copuig

0 ou
— (CrpLecuy) + €LpLgcos 0 + ComepLaym — Cm1€GPLUr -

C 2o o —2ap B 1w (129)

m2PL LUy —— 3z SEGR
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DGMG apL 86(‘,
PGEG—p — =~ Gg;+ €G- (CpPLéLu )+ Copr; —— o

ou
_£(CipL€Gu ) + €gpggcos 0— CvméGpLavm + leéGpLura_Zr

b 36(} 3 CD

+Cm2pLtt; —— o SeGR—pLu 2€GPG];)—UG|UG| (130)

To eliminate the pressure gradients, we divide Egs. (129) and (130) by prer and preg

respectively, and subtract one from the other:

Cim \ Dgug Cym \ Drur €G Cii our
; —(1 2 Coer +C G -y T )y, 2
(pG * ) * Dt peL+ G €L o 2er, oz

€L Dt €L

2eG + €L Ci Cm\ »0G
(20, ~ECT L g T M2 ) 256
( P €GEL et €G  ELEG )ur 0z

(131)

3C )
P2 (fiw L | u — fow | uG | uG)
8€LRb

where p g = pa/pL-
If we rewrite Eqs. (113), (114) and (131) in matrix form, we obtain the one-dimensional

system of equation as,

o~}
[I>

€L

oD od
A—+B—=c 132
8[+ 0z (132)
where
€G
Q| ug
uL
0
c2| o
Co
0
1 0 0
A2l 1 0
0 pf+Cn _(1+C;Lm)
UG €G 0
( 0 —€L,

Bu? (p?}'i‘%)uG_Bﬂ/lr —<1+CEVL"“)ML+B2ur
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2ata. G Cm

B122C,
€EGEL €G €LEG

Cm
Bzéz(qcp +9¢ -¢ +—1)
€L, 26L

2 i} .
Co2 ur | uy | +D—H(fLw | up | uL — p&8cw | uG | ug) + (p& — 1) gcos

3

8 éLRb
The system’s characteristics (i.e. the eigenvalues, 1) can be found by solving:

det(B — AA) = 0. (133)

Using the definitions of the system matrices, we obtain the characteristic question as:

eL(X—uG)KpE 4 Em )(x — ug) + Bzur]

€L
Cvm 2
—I-EG(}\.—ML) 1+ . (7\ — uL) + Bou, | — eLegBlur =0. (134)
L
If we define,
7\.* A A — ur,
Ug — uL

the characteristic equation becomes,
a4+ e\ 4 a3 =0, (135)

where

%« Cvm Cvm
a; =¢.| pG + +eg| 1+
€1, €1,
Cvm BZ
=2 — koo ovm ) P2
a |: 6L<pG+ EL)+2]

vm

as =cp (P*G + .

) — ELG(;Bl — ELBz.
L

Solving Eq. (135) for A",
VL = v ST (136)

where

[Cvm — B2/2 + p*GEL]

V* = €L 2
cLeg + Cym + p5er

(137)

™ =ereg + Cym + pgei (138)
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Fig. 3. The effect of C,, on the system’s characteristics.

[Com — B2/2+ pgaL]
v = ¢ — e (e Lot + Cym — cLEGB — e.B). 139
L e + Com & plcs L(eLpG + Com — €LeGB) — e.By) (139)

Interestingly, the eigenvalues are always complex for the coefficients given in Eq. (128).
However, as can be seen in Fig. 3, the two-fluid model is well-posed in the interval,
0 < eg <0.19, if we use the following constitutive coefficients: Cy, = 0.5, C, = 0.5, C, = 0.2,
C;=0.3, Cph1 = Chpo=0.1. It is interesting to note that the well-posed region increases with
the increasing values of the interfacial pressure difference associated with helical orbits (e.g.
C, = 1.0; Lance and Bataille, 1991). It should be noted that the interfacial pressure difference
is a function of two-phase Weber number when the bubble is not spherical (Park and Choi,
1997). Indeed, the characteristic speed with increased values of C,, agrees well with the void
wave data as shown in Fig. 6.

As shown in Fig. 4, when fixing C,, = 0.5, the system’s characteristics also vary with different
values of the virtual mass (C,,,), the two-phase Reynolds stress (C,), the interfacial stress (Cj).
Interestingly, a reduced value of the virtual volume coefficient (C,,,) was found to dramatically
increase the well-posed region. The system’s characteristics are not very sensitive to the bubble-
induced Reynolds stress, which is in contrast to the results of some previous studies (Pauchon
and Banerjee, 1988) in which a more simplified two-fluid model was used.

Reduced values of the interfacial stress coefficient (C;) increases the well-posed region. This
implies that interfacial momentum transfer in two-phase flow plays an important role in the
transient response of a two-fluid model. It should be noted that the void fraction gradient
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Fig. 4. System’s characteristics for different constitutive coefficients.

parameters in the interfacial momentum transfer, C,; and C,, were found to also be
important in controlling the system’s void wave characteristics.

6. Linear void wave analysis

Let us now investigate the dispersion characteristics of the two-fluid model presented herein.
To this end, we introduce a perturbation in two-fluid variables such that,

W=w,+w, (140)

where w represents each two-fluid state variable, the subscript o denotes the steady-state and
the prime (') a small perturbation.

Inserting Eq. (140) into Egs. (113)—(116), we obtain the linearized system of conservation
equations as:

de dey. ouyp
=L TL g Tl =0 141
pr o T, (141)
de deg dug
Badc Bad < Sl ) 142
or T UGe T, TGy (142)
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Fig. 6. Characteristics/kinematic void wave speeds and void wave speed data.
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DLuL _Opp | Apricdep rLlo aeL (tLo + %) dcy

9 ,
+ =L+ )+

L Dt 0z €lo 0z € 0z 0Oz €lo 0z
dy’ d d
(M{Ii : + A/[(Li) M<L1)o ¢ 4 Tiw TLwo
+ €L —— ———€L (143)
€Go eLO Dy \ eLo €,
Doug __0pli T 86G —(r 4R bl + (TGo + 766 + 050) B
G Dt 0z €Ggo Oz G o, €Go 0z

_ . 144
€Go 62(;0 €Go ( )

d)’ d d
_(A/[(I?i) +M(Li) M(lej / _i(T/GW TGwo )

€G
€Go ééo Dy

If we divide Eqs. (143) and (144) by pp and subtract one from the other to eliminate the
pressure gradient, we obtain the combined momentum equation as,

. Dol Droui 1 0Apy;  Apuiodef 1y, g
G Dt Dt pL 0z PLEL0OZ  PLEGoELo 0z
J Re’ , , ren - (TGo + rg" + 050) e
——(z T oL—1T] —1 —
+ Laz(G+G +o,—TtL -1 )+ Lo oz
dy’ dy’
(ot i M + M) Mio | Mo,
PLELo 0z P1.EGo€Lo 6%;0 G 62Lo .
4 T/ T T T
Lw _ ZIwo r ZGw 4 “Gwo /), (145)
prDu \ €0 o €Go €Go

To achieve closure, the constitutive relations must be expressed in terms of the state variables,
up, ug and (€ £ ¢ = 1 — ¢;. We note that all perturbations on the right hand side of Eq. (145)
except those associated with non-drag effects, are of the form:

F =Fof + Fapuy + Fuglc (146)
where
A OF
Fo2 o (147)
8 (0]

The non-algebraic constitutive relations must be treated differently. In particular, the perturbed
form of the non-drag interfacial momentum exchange term can be found from Eq. (117) as:

' Dgoug  Diouj
d)’ _ Goll G Lol
M(Lnl = vmeGopL< Dt - Dt >
Nug —up)
0z

/
2 Jeg
ro 82

_CmIEGopLuro - szpLM (148)
To eliminate the derivatives of the phasic velocity perturbations, we differentiate Eq. (145) and

the perturbed continuity equations (i.e. Eqgs. (141) and (142)) with respect to time and space,
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respectively, and combine them. We thus obtain the combined momentum equation as,

de’ e’ 8¢’ 3¢’ 3¢’
Ki—+K—+K—+Ki—+ Ks—=0, 149
1oy TR, TR T g T 85 (149
where
d) d)
- (M( own _ M Lio(uG>>
pLEO(l - 60) I —¢ €o
N 1 [ 1 (TLw(uL) B TLw(uG)> n 1 (TGw(uL)  TGwlug) >:|
prDu [ (1 — )\ 1 —6 €o e\ 1—-¢6 €o
d) d)
K2 A 1 Md) + M(Lio(uL) U — ]\/I(Lio(ug) UG
prLéo(l —€) Lio@ =1 ¢, T € o
_ M) n 4 (T TLw)  TLw(ug) )
2 Lw(¢) T ULo — — = UGo
pL(l — )6 pPLDu(l — &) 1 —¢ €o
TGw(ur) TGw(ug) > 4t wo 41Gwo
- TGw(o + uo — 22060 ) +
pLDuC < MO T ™ T G ) T g Da(l =) pLDue

N 1 — €o €o 60(1 — 60)2

Cym UGo Cym ULo
Ki&2 P L A 1
4 |:(pG+l—6o) I +( +1—60)1—60]

1 Re le
+ m ( — Apriu) + s = TL) T AL ?&)Uro
1

PrCo

C u? C u? TRe
K A * vm Go 1 vm Lo Lio
> (pG+1—€O eo+ +1—eo 1—60+pL€0(1—€O)

Cii
< - ApLi(ug) + Os(uy) — Tlljfug) — PL 71 —mé Ler)
o

! A .+TRe P C
+—<—ApLi((,)+US(L)——CE(€C)+M+ﬁ+M 2)

PL 1 —¢ € 6l =€) ™
ULo Re chml
o (v ow oy + 15w )
UGo Re PL le
~ pico ( ~APLivo F 00 T T ”“’)'
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Eq. (149) can be rewritten in a more compact form as:

3 9 3 AV 3
= a7 2 =)= — )¢ =0, 150
|:8t+a+82+ (az“ 82)(8l+r+8z)]6 (150)
where
K,
_2 151
a+ K (151)
K, 1 /K \> [ Ks
—_ S(B4) (B 152
r+ 21<3+\/4<K3) K; (152
K;
T=22 153
K, (153)

It can be shown (Whitham, 1974) that a ,, r, and T are the kinematic wave speed, the two
void wave characteristics and the relaxation time of the void wave perturbation, respectively.

The behavior of the linear void wave may be conveniently examined by evaluating the
dispersion relation. The dispersion relation can be obtained by assuming a modal traveling-
wave solution of Eq. (150) of the form:

¢ = ¢yeltzon (154)
where k¥ and w are the wave number and the angular frequency, respectively.
Inserting Eq. (154) into (150), we obtain the void wave’s dispersion relation as,
Jw—ayk)+ T(w —r_x)(w —rix) =0. (155)
If we consider the region where Eq. (150) is hyperbolic (i.e. where r are real), the celerity, C,,

of the void wave perturbation for traveling waves (i.e. when « is real) can be found by solving
the following coupled equations:

| (a,—F
=— —1 156
! 2T<C6—f ) (156)

wz:CS[ (ar =)’ = (Cc = 7)? ]
AT LG (€=

(157)

where

W =R + joi

C. =wr/x

ry +r_
>

F=
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One finds from Eq. (157) that void wave dispersion is pronounced for large values of the
relaxation time (77), since the wave speed is strongly dependent on the angular frequency (wg)
when the relaxation time is large.

It has been found (Park et al., 1990a) that Eqgs. (156) and (157) have two solutions for C,
for a specified value of angular frequency, wg. The faster void wave (C.") is the predominant
one and it yields the classical kinematic void wave speed (¢4 ) in the limit of zero frequency,
where the damping also vanishes. The other one is a complementary void wave, (C. ), which is
slower than C,” and has relatively large damping. A complementary void wave speed (a _) can
be found from Eq. (157).

lim CC =a_=ry+r_—a,. (158)
The well-known stability criteria (Whitham, 1974) for the C,” wave can be recovered by noting
that the damping coeflicient given by Eq. (156) will be negative if,

ro<ay <rg. (159)

The kinematic void wave speed can be obtained using Eq. (151) and the constitutive relations
given by Eqgs. (118), (124) and (125):

ay — UL
An e 0 — | o, (160)
UGo — ULo
where
C Cbuyp) Chye 32(1—¢o)t
3% — o — =+ (1 — &) D”+¢
"= b b 3ppuz, Du (161)
- CD CD(LIL) D(u 64¢ oTLwo '
2 e — ¢ 1— Eo)U G) —
Ry ollro —p— +( o)Uro r T 3poic Di

If we use the interfacial drag coefficient given by Eqgs. (58) and (59), we obtain,
n="17/4 (162)
for distorted bubbles (Harmathy, 1960), and,

2.0 4 2.5, + (0.275 + 0.0625p,,) Rl 7S + [%}Reb
n = [ L%ro ] (163)
1+ 0.1750Rel ™ + [22251"}’ DH} Rey,

for undistorted spherical bubbles (Ishii and Zuber, 1979).

The void wave characteristics can be found by inserting the appropriate constitutive relations
into Eq. (152). As expected, the characteristics obtained by this dispersion analysis are the
same as those obtained by the system’s eigenvalue analysis in the previous section, Eq. (136).

The dispersion analysis results are more general than those from an eigenvalue analysis,
since the dispersion analysis includes all possible frequency dependent propagations of different
order. Their interaction is as indicated in Eq. (150); in particular, the first-order waves are the
kinematic waves and the second order waves are the characteristics.
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If we neglect the wall shear in Eq. (163), we find that 1.7 < n < 3.0 for all possible values of
the bubble Reynolds number, Re,, for undistorted spherical particles. To bound the
possibilities, the dimensionless kinematic wave speed for » = 1.7 and 3.0 is shown in Fig. 5
along with the corresponding characteristics. According to the stability criteria given in
Eq. (159), the kinematic wave is stable for all possible values of Rey, until 4" intersects A .

The relaxation time can be found from Eq. (153) as:

7 Ro leo(l = co) + Com + p5(1 = co)’1Rey,

o 9 €T '
tro [1 +0.1750Re0TS + (%DH)R%}
25pLu;

ro

(164)

As discussed earlier, the dispersion relation yields a complementary kinematic void wave. If we
use Eq. (158), the dimensionless form of the complementary kinematic void wave speed is
given by:
s R Y LU (165)
UGo — ULo

where A are given by Eq. (136). The nondimensional complementary kinematic speed given
by Eq. (165) is also shown in Fig. 5 for the two limiting values of #.

The temporal damping of the complementary kinematic wave can be found from Egs. (156),
(158) and (164) as:

2.25p u2

ro

ou |:1 + 0.1750Re) 7 + <2(°TL“'°Rb DH)i|R€b
_ 1o

Ry [eo(1 = €o) + Cym + pi5(1 — €0)*1Rep

(166)

It was found (Park et al., 1994) that the damping of the complementary kinematic wave was
large for most two-phase flows.

It should be noted that, to date, no experimental verification exists of the presence of the
complementary void wave. However, since the intersection of the eigenvalues (i.e. where
2" = 2") signals the onset for ill-posedness, the complementary wave speed at that point is

AT =2 — A% (167]

Thus, the onset of ill-posedness is, in principle, measurable if both A% and 4" can be
measured.

The characteristics and the kinematic wave speed derived here have been compared against
experimental data (Boure, 1988; Kytomaa and Brennen, 1991). As shown in Fig. 6, the
characteristics (with Cy,, = C, =0.5, ¢, =0.2, ¢;=03, C,; = Cyp = 0.1) and the kinematic
wave speed of distorted bubble drag law agree well with the experimental data at low void
fraction region (i.e. 0 < ¢g < 0.15). As the void fraction is increased, however, the data and
the theory have large discrepancy since the assumptions used in this derivation may not be
valid anymore.
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7. Nonlinear void wave analysis

When the magnitude of the disturbances in two-phase flow is large, the linear void wave
approximation is no longer appropriate for describing void wave propagations. It is known
that many important nonlinear void wave phenomena occur in two-phase flow, for example,
pool swell (Vea and Lahey, 1978). Surprisingly, nonlinear void waves have only been studied
by a few authors (Park et al., 1990b; Haley et al., 1991; Lahey, 1991).

Let us consider a one-dimensional coordinate system moving at celerity, Cs. Then, we may
obtain the relationship between the physical and the moving coordinate variables using the
following transformations:

{=z—Cst. (168)

Using Eq. (168), we can recast the one-dimensional system of equations, Eq. (132), into the
moving coordinate system as,

0P 0P
A—+B-CA)—=c 169
o B CA T =c (169)

If we consider only time-invariant, fully-developed solutions in {—¢ plane, we may neglect the
transient term in Eq. (169) to obtain:

do

(B—CA)gz=c

(170)

Since we are interested in void fraction propagation, we obtain the void wave equation by
taking the first vector component of

gzm_qmm, (171)

which, as shown in Appendix, is given by,

de  Gle, uL, ug, Cy)

dC  H(e, up. ug. Cy) 172
dl H(e u, ug, G)’ (172)

where

[pG(1 =€) + Cyn]
(1-0

H(e, up, ug, Cs) = (Cs — uG)2

(1—¢c+ Cyp)
(1—e¢

Cs — Cs —
(Cs—uL)2+Bzur( S€”G+ : uL)—Bl|ur|ur (173)

1—c¢
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1 3Dy
G(e, up, ug, Cs) —m |:§R—b Cp | uy | uy —fw | up | MLi|
=(1 — pg)gcos b, (174)

and B; and B, are given by Eq. (132).
As can be seen in Appendix, the system’s characteristic equation, that is, det(B— CsA) = 0,
is equivalent to,

H(e, u, ug, Cs) = 0. (175)
If we solve Eq. (175) for the celerity, Cs, we obtain,
Cs —
cra T ey o (176)
Uug — uy,

where V*, v* and t* are identical to the expressions given by Eqgs. (137)—(139), respectively.
Therefore, we find that if we select the speed of the moving coordinate system the same as the
system’s characteristics, the void fraction gradient may become infinite in the specified frame of
reference. Since an infinite void fraction gradient is possible only for a sharp discontinuity in
the void fraction profile, one may obtain the shock solutions by selecting C; = 1* (Haley et al.,
1991).

Similarly, since the void fraction gradient vanishes in Eq. (172) when

G(e, ur, ug, Cs) = 0 (177)

the roots of Eq. (177) can be recognized as the steady-states.
To identify the steady-states in terms of void fraction, we must consider phasic continuity. If
we subtract the second from the first vector components of Eq. (170), we obtain,

d
—leug + (1 —e)ur] = 0. (178)
d¢
Integration of Eq. (178) yields the result that the total volume flux, j, is a conserved quantity in
the {—¢ plane. That is,
j2eug + (1 — €)up, = constant. (179)

We may obtain another conserved quantity, K by integrating the second vector component of
Eq. (170), which is the gas phase continuity, to obtain:

K2 ¢eCy + (1 — €)up, = constant. (180)
Using Egs. (179) and (180), we can obtain the phasic velocities in terms of the void fraction:
K—¢C
u == s (181)
1 —e¢

i — K
ug = C, +]T‘ (182)
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Inserting Eqgs. (181) and (182) into Eq. (174), we obtain,

. 2 2
ao:——i——{é%EQﬁﬂ<Q_K4L%f)—ﬂ(K_“*>. (183)

2(1 —¢)Dy | 8 1—c¢ 1—c¢

Unfortunately, an analytic expression of the zeroes of G(e¢) is not possible. However, it
has been found numerically that G(¢) has at most two zeroes within the range of
0 < e<1, for all possible values of j, K, C; and interfacial drag, n. We denote those
zeroes by ¢; and ¢.

Since j and K have been found to be conserved quantities, we have, from Egs. (179) and
(180),

erugt + (I — eur = eugy — (1 — e2)ury (184)

aCs + (1 +a)ury = Cs + (1 — e)ury. (185)
Solving Eq. (185) for C,, we obtain:

L a- L
_ (U —eu — (I —eus _ju Jua (186)
€ — € € — €

G

It is interesting to note that the celerity given by Eq. (186) is the same as the continuity shock
speed derived from drift—flux theory by Wallis (1969).

Also, if we neglect wall friction, the shock speed referenced to the liquid phase velocity can
be found from Egs. (177) and (183)—(185) as,

CS — UL _ 1 - € |:€2 (1 - EZ)CD(Q) _ 61:| (187)
UL —uLr € — 6 (I —)Cpler) '

Another form of the shock speed can be found by solving G(¢;) = G(¢;) = 0 with Eqgs. (184)
and (185), resulting in:

B RycosO(1 —p&) 1 — 1 — 1 — 1—

. 3 G € €1 € €2

Co—j= - , 188
/ a—mm—u—mm[e2Vqﬁo 2 %@J (188)

Thus, Eq. (188) can be used to determine the nonlinear void wave speed referenced to the
center of volume velocity (j) when a step change of void fraction is specified.

As a special case, the quasi-static linear kinematic wave speed can be found from Eq. (187)
when the void fraction change is small enough. That is,

Cs —up)

A0 = lim =1-ne. (189)
e—c=¢ UG] — UL]
where
. 3Cp 4+ (1 —)Cpye . (190)

2Cp
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With virtual mass effect

i (Cyn=0.5)
< Without virtual mass effect
TN (C,n=0)

0.3 1

0.2

-0.15 -0.1 -0.05 0 0.05 0.01 0.15
&(m)

Fig. 7. Nonlinear void wave solutions with and without virtual mass.

This agrees with the result of the linear analysis, Eqgs. (160) and (161), if we assume that the
interfacial drag coefficient is only a function of void fraction [i.e. Cp(,,) = Cp,) = 0] and that
wall friction is small.

It should be noted that when the interfacial drag law includes the phasic velocities (e.g.
Eq. (59)), we need the expression for K to relate the phasic velocities with void fraction.

Since the total volume flux is assumed to be known, K can be obtained by solving
G(¢1) = G(ey) = 0 simultaneously, yielding:

18 *
3 &Rycos 0(1 — p§) [ 1—¢ 1—62i|
K—j= l—¢€)|=———-U—-¢€)|=——] 191
T =a)/a—- T —a)q ( % Cp(er) (1-e) Cp(€) (191
Consequently, we can obtain the phasic velocities in terms of void fractions using Eqgs. (181),
(182), (188) and (191).

If we eliminate the phasic velocities using conserved quantities, and Eqs. (181) and (182), we
may obtain another form of Eq. (172), where void fraction is the only dependent variable:

de  G(o)
dt~ H@©)'

(192)

Integrating Eq. (192) by separation of variables, we obtain an implicit expression for the void
fraction profile in the {—¢ plane as,

_[HO,
=] G (199
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0.4 1 Pressurized system
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S
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Fig. 8. Nonlinear void wave solutions at atmospheric and pressurized system (i.e. p = 15.5 MPa) conditions.

where
= (€1 + )
2
€ <€eE<6,

and { is taken so that { =0 at e = ¢.

Thus, the void fraction profile determined by Eq. (193) propagates at celerity, Cs, given by
Eq. (188) when the void fraction is changed from ¢; to ¢, (or, alternatively, from ¢, to ¢;)
without variation of the total volume flux, j.

Moreover, since we consider only time-invariant void waves, the resulting, solutions should
be understood as being the fully-developed void wave profile for some specified initial and final
conditions.

If we consider Eq. (193), we find that the void wave profile breaks (i.e. the solution is
multivalued in the {—¢ plane), when,

€] < €01,602, ... <€ (194)

where €41, €42, ... are the roots of H(¢) = 0. More specifically, possible nonlinear void wave
profiles, which depend on the integrand of Eq. (193). When H(c¢) has zero between ¢; and ¢,
the void wave profile breaks, which must be fitted to be a meaningful shock solution
(Whitham, 1974). In contrast, when H(¢) has no zeroes between ¢; and ¢,, the void wave profile
is a soliton (i.e. a smooth but time invariant, propagating solution).
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Theoretically (Whitham, 1974), wave breaking occurs when the propagating wave speed, Cs,
is in between the larger characteristic speed of the initial state (i.e. conditions ahead of the
shock, 1) and that of the final state (i.e. the conditions behind the shock, 2). That is,

(r4)y = (xj_ur +uL); < Cs < (Xiur +ur)y = (r+)> (195)
when ¢; > 6.

If we rearrange Eq. (195) using Egs. (181), (182), (188) and (191), we obtain the condition
for nonlinear void wave breaking as:

A — 2*
(7?)(1 —6)q < € — € < (il) a1 -)e. (196)
I —21(e) 1 Coe)f 1-6 \ 1 =25 (e1)
T V)| T-¢q

Using the solutions of Eq. (193) with an undistorted bubble drag law (n = 3.0), void wave
profile solutions with and without virtual mass are shown in Fig. 6. As can be seen, the virtual
mass force reduces the void shock strength significantly. This observation is in agreement with
that of Haley et al. (1991).

Nonlinear void wave solutions with two different values of the density ratio (p ) are shown
in Fig. 7. When p g = 0.14, which is typical for the primary system pressure in PWR, is used,
the void shock solitons do not change their shape significantly.

It is found that increased values of the interfacial stress make nonlinear wave solutions
possible for a wider range of void fraction. However, the two-phase Reynolds stress does not
change the properties of nonlinear void waves significantly.

The void fraction gradient parameter in the interfacial momentum exchange, C,», was found
to be crucial in determining the behavior of nonlinear void waves.

The results of the nonlinear analysis imply that two-fluid model closure relations can be
independently assessed and/or developed by investigating finite amplitude void waves. This is
significant, since independent means are required for complete two-fluid model assessment.

8. Conclusion

An ensemble-averaged two-fluid model for adiabatic two-phase flows has been derived and
used for the analysis of void wave propagation. A mechanistic treatment of the phasic interface
has been found to be important for properly modeling interfacial momentum exchange
phenomena. That is, the interfacial stress should be taken into account properly when the
phasic momentum jump is considered.

Based upon this study, the continuous phase interfacial pressure difference and the void
fraction gradient term in the non-drag force are found to be crucial in determining the
behavior of non-linear two-phase bubbly flows. Linear and nonlinear void wave analysis
reveals that void waves can be used as a means of assessing the closure relations for bubbly
flows and flow regime transition. The authors hope this study will promote further research on
two-fluid modeling as well as the investigation of void wave phenomena.
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Appendix A

From the definitions of two-phase system matrices, Eq. (132), we obtain:

CGs €G 0
CLS 0 0
B—- CA = ,
BLM <,0>'(:J + C;vm)CGS — Bgur — (1 + %)CLS — Bzur
where

A
Cgs=ug — Cs

A
CLSZML — Cs.

The inverse of (B— C,A) is given by,

Lo By By Bis
B—-CA)" = A By By By |,
B3y By B3

where

A = det(B — C;A) = ege . H(e, up, ug, Cs)

pGl(1 — ) + Cin]
(I1-9
Il —¢c+ Cyn

(1-e¢?

H(e, ur, ug, Cs) = (Cs - uG)2

Cs —

(A1)

C _
(Cs—ML)2+Bzur< : - 16

1 —¢

m)—melm(A@
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C.
By =— EL(P*G + 6vm)CGs + Boeruy
L

C.
B> =6G<1 + Vm>CLs — Breguy

€L
B3 =—ees
Cim )
By =1+ c CLS — Bou,Crs — Biep | ur | uy
L

Cum
By =— (1 + c >CGsCLs + Bou, Cgg
L

By; =¢1.Cas
* Cvm
B3 = PG+ ? CgsCrs — Bou Crg

Cvm
€L

By =— (pz + )Cés + BourCgs + Baeg | ur | uy

B33 = — ¢gCrs.

References

Alajbegovic, A., 1994. Phase distribution and turbulence structure for solid/fluid upflows in a pipe. Ph.D. thesis, Rensselaer
Polytechnic Institute, Troy, New York.

Arnold, G.S., 1988. Entropy and objectivity as constraints upon constitutive equations for two-fluid modeling of multiphase flow.
Ph.D. thesis. Rensselaer Polytechnic Institute, Troy, New York.

Batchelor, G.K., 1970. Statistical hydrodynamics of dispersed systems. Journal of Fluid Mechanics 49, 489-507.

Biesheuvel, A., van Wijngaarden, L., 1990. Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. Journal of Fluid
Mechanics 148.

Biesheuvel, A., Gorrisen, W.C.M., 1990. Void fraction disturbances in a uniform bubbly fluid. International Journal of Multiphase
Flow 16 (2), 211-231.

Bouré, J.A., 1982. Kinematic models, void-fraction waves and other propagation phenomena in two-phase flows. Proceedings of the
Ninth U.S. Congress of Applied Mechanics. Ithaca, New York.

Bour¢, J.A., 1988. Properties of kinematic void waves in two-phase pipe flows, consequences on the modeling-strategy. European Two-
Phase Flow Group Meeting, Brussels, Belgium.

Buyevich, Y.A., 1971. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics 42, 545-570.

Delhaye, J.M., 1976. Instantaneous space-averaged equations. In: Kakac, Veziroglu (Ed.). Two-phase Flows and Heat Transfer, Vol.
1. Hemisphere, New York, pp. 81-90.

Drew, D.A., 1983. Mathematical modeling of two-phase flow. Annual Review of Fluids Mechanics 15, 261-291.

Drew, D.A., 1991. Effect of particle velocity fluctuations in particle fluid flows. Physica 179A, 69-80.

Drew, D.A., Lahey, R.T., Jr, 1987. The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International
Journal of Multiphase Flow 13, 113-121.

Drew, D.A., Lahey, R.T., Jr, 1989a. Application of general constitutive principles to the derivation of multidimensional two-phase flow
equations. International Journal of Multiphase Flow 5, 243-263.



1244 J.-W. Park et al. | International Journal of Multiphase Flow 24 (1998) 1205-1244

Drew, D.A., Lahey, R.T., Jr, 1989b. Some supplemental analysis concerning the virtual mass and lift force on a sphere in rotating and
straining inviscid flow. International Journal of Multiphase Flow 16, 1127-1130.

Geurst, A., 1986. Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures. Physica 135A, 455-486.

Haley, T., Drew, D.A., Lahey, R.T., Jr, 1991. An analysis of the eigenvalues of bubbly two-phase flows. Journal of Chemical
Engineering Communication 106, 93-117.

Harmathy, TZ., 1960. Velocity of large drops and bubbles in media of infinite or restricted extent. AIChE Journal 6 (2).

Ishii, M., 1975. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris.

Ishii, M., Mishima, K., 1984. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design 82, 107-126.

Ishii, M., Zuber, N., 1979. Relative motion and interfacial drag coefficient in dispersed two-phase flow of bubbles, drops and particles.
Paper 56a, AIChE 71st Annual Meeting. Miami, FL.

Kytomaa, H.K., Brennen, C.E., 1991. Small amplitude kinematic wave propagation in two component media. International Journal of
Multiphase Flow 17, 13-26.

Lahey, R.T., Jr, 1991. Void wave propagation phenomena in two-phase flow (Kern Award Lecture). AIChE Journal 37, 123-135.

Lahey, R.T., Jr, Drew, D.A., 1989. The three-dimensional time and volume averaged conservation equations of two-phase flows.
Advances in Nuclear Science and Technology 20, .

Lahey, R.T. Jr, Drew, D.A., 1990. The current state-of-the-art in the modeling of vapor/liquid two-phase flows. ASME 90-WA/HT-13.

Lance, M., Bataille, J., 1991. Turbulence in the liquid phase of a uniform bubbly air—water flow. Journal of Fluid Mechanics 222, 95—
118.

Nigmatulin, R.I., 1979. Spatial averaging in the mechanics of heterogeneous and dispersed systems. International Journal of
Multiphase Flow 5, 353-385.
Park, J-W., Choi, H., 1997. An assessment of average thermal-hydraulic governing equations used in PWR/PHWR system design and
safety analysis. Proceedings of the Eighth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics 1, 109-116.
Park, J-W., Drew, D.A., Lahey, R.T., Jr, 1994. The measurement of void waves in bubbly two-phase flows. Nuclear Engineering and
Design 149, 37-52.

Park, J-W., Drew, D.A., Lahey, R.T., Jr, 1990a. Void wave dispersion in bubbly flows. Nuclear Engineering and Design 121, 1-10.

Park, J-W., Drew, D.A., Lahey, R.T. Jr, 1990b. An analysis of nonlinear void waves. In: Proceedings of the 9th International Heat
Transfer Conference. Jerusalem, Israel.

Pauchon, C., Smereka, P., 1992. Momentum interactions in dispersed flow: an averaging and a variational approach. International
Journal of Multiphase Flow 18 (1), 65-87.

Pauchon, C., Banerjee, S., 1986. Interphase momentum interaction effects in the averaged multifield model. International Journal of
Multiphase Flow 12 (4), 559-573.

Stuhmiller, J.H., 1977. The influence of interfacial pressure forces on the character of two-phase flow model equations. International
Journal of Multiphase Flow 3, 551-560.

Taylor, G.1., 1928. The forces on a body in a curved or converging stream or fluid. In: Proceedings of the Royal Society, A120, pp.
260-283.

Vea, H.W., Lahey, R.T., Jr, 1978. An exact analytical solution of pool swell dynamics during depressurization by method of charac-
teristics. Nuclear Engineering and Design 45, 101-116.

Voinov, O.V., 1973. Force acting on a sphere in a homogeneous flow of an ideal incompressible fluid. Journal of Applied Mechanics
and Technology Physics 14, 592-594.

Wallis, G.B., 1991. The averaged Bernoulli equation and macroscopic equations of motion for the potential motion of a two-phase
dispersion. International Journal of Multiphase Flow 17, 683-695.

Whitham, G.B., 1974. Linear and Nonlinear Waves. Wiley, Chichester, UK.



